|
[1] V. Jose, A. Jayakumar, J.M. Lee, Bimetal/Metal Oxide Encapsulated in Graphitic Nitrogen Doped Mesoporous Carbon Networks for Enhanced Oxygen Electrocatalysis, ChemElectroChem, 6 (2019) 1485-1491. [2] Z. Du, P. Yu, L. Wang, C. Tian, X. Liu, G. Zhang, H. Fu, Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery, Science China Materials, 63 (2020) 327-338. [3] B. Soltani, N.-E. Benchouia, Fuel Cells and Hydrogen Storage: Challenges Facing Vehicle Manufacturers, (2019). [4] J. Walkowiak-Kulikowska, J. Wolska, H. Koroniak, Polymers application in proton exchange membranes for fuel cells (PEMFCs), 2 (2017). [5] S. George, N. Sehgal, K.P.S. Rana, V. Kumar, A comprehensive review on modelling and maximum power point tracking of PEMFC, Cleaner Energy Systems, 3 (2022) 100031. [6] 江文鉅、林永清, 綠色能源科技─淺談燃料電池, 2006. [7] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 35 (2010) 9349-9384. [8] G. Das, J.-H. Choi, P.K.T. Nguyen, D.-J. Kim, Y.-S. Yoon, Anion Exchange Membranes for Fuel Cell Application: A Review, Polymers, 14 (2022) 1197. [9] J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Springer London, 2008. [10] N.A. Rosli, K.S. Loh, W.Y. Wong, R.M. Yunus, T.K. Lee, A. Ahmad, S.T. Chong, Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids, International Journal of Molecular Sciences, 2020. [11] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56 (2005) 9-35. [12] X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design, Chem, 5 (2019) 1486-1511. [13] A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy Environ. Sci., 4 (2011) 1238-1254. [14] C. Liu, C.-c. Sung, A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies, J. Power Sources, 220 (2012) 348-353. [15] R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, npj Computational Materials, 5 (2019) 78. [16] L. Dai, Y. Xue, L. Qu, C. Hyun-Jung, J.-B. Baek, Metal-Free Catalysts for Oxygen Reduction Reaction, Chemical reviews, 115 (2015). [17] B. Dasari, V. Parthiban, A. Sahu, K. Ramesha, Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application, Bulletin of Materials Science, 44 (2021). [18] G. Zhang, Q. Wei, X. Yang, A. Tavares, S. Sun, RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution, Applied Catalysis B: Environmental, 206 (2017). [19] Y. Su, Y. Zhu, X. Yang, J. Shen, J. Lu, X. Zhang, J. Chen, C. Li, A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells, Industrial & Engineering Chemistry Research, 52 (2013) 6076-6082. [20] J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G.E. Sterbinsky, Z. Feng, D. Su, K.L. More, G. Wang, Z. Wang, G. Wu, Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells, Nature Catalysis, 1 (2018) 935-945. [21] J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra, Nano Letters, 10 (2010) 638-644. [22] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science (New York, N.Y.), 323 (2009) 760-764. [23] X. Zhou, S. Tang, Y. Yin, S. Sun, J. Qiao, Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells, Applied Energy, 175 (2016) 459-467. [24] X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, G. Wu, X. Li, Directly Converting Fe−doped Metal-Organic Frameworks into Highly Active and Stable Fe−N-C Catalysts for Oxygen Reduction in Acid, Nano Energy, 25 (2016). [25] X. Tian, M. Zhou, M. Li, C. Tan, L. Liang, P. Su, Nitrogen-doped activated carbon as metal-free oxygen reduction catalyst for cost-effective rolling-pressed air-cathode in microbial fuel cells, Fuel, 223 (2018) 422-430. [26] H.-J. Zhang, X. Yuan, Z.-F. Ma, W. Wen, J. Yang, Investigation of Non-Precious Metal CoN4-Based Oxygen Reduction Catalyst by Electrochemical and X-ray Absorption Spectroscopy Techniques, Journal of The Electrochemical Society, 161 (2014) H155. [27] H.-J. Zhang, X. Yuan, W. Wen, D.-Y. Zhang, L. Sun, Q.-Z. Jiang, Z.-F. Ma, Electrochemical performance of a novel CoTETA/C catalyst for the oxygen reduction reaction, Electrochemistry Communications, 11 (2009) 206-208. [28] R. Raza, F. Ahmed, A. Khan, M. Iftikhar, S.M. Abbas, S. Ali, Effect of metal-reinforced UV-O3-TETA functionalized MWCNTs on thermomechanical and radiation-resistant properties of PMMA, Materials Today Communications, 24 (2020) 101181.
|