跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 08:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖頂良
研究生(外文):LIAO,DING-LIANG
論文名稱:三乙烯四胺系聚亞胺與鈷鐵鍛燒所形成之螯合物作為陰離子交換膜燃料電池陰極觸媒之研究
論文名稱(外文):Studies on calcined CoFe-Chelated Triethylenetetramine based polyimine as cathode catalyst for anion exchanged membrane fuel cell
指導教授:何國賢何國賢引用關係
指導教授(外文):HO,KO-SHAN
口試委員:張美濙何國賢黃文堯謝達華
口試委員(外文):CHANG,MEI-YINGHO,KO-SHANHUANG,WEN-YAOHSIEH,TAR-HWA
口試日期:2023-07-17
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:三乙烯四胺氯化亞鈷三氯化鐵對苯二甲醛陰離子交換膜燃料電池
外文關鍵詞:TriethylenetetramineCobalt(II) chlorideIron(III) chlorideTerephthalaldehydAnion Exchange Membrane Fuel Cell(AEMFC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究架構 2
1.3.1 探討不同鍛燒溫度下觸媒的電化學表現 2
1.3.2 對比20%商用白金碳觸媒之性能 2
第二章 文獻回顧 3
2.1 燃料電池的發展 3
2.2 燃料電池的發電原理 4
2.3 燃料電池的優點 6
2.4 燃料電池的種類 6
2.5 陰離子交換膜燃料電池(AEMFC) 8
2.5.1 AEMFC之原理 8
2.5.2 燃料電池極化 9
2.5.3 陰極子交換膜燃料電池構造與元件 10
2.5.4 陰極子交換膜(Anion Exchange Membrane, AEM) 10
2.5.5 觸媒層(Catalyst Layer, CL) 11
2.5.6 氣體擴散層(Gas Diffusion, GDL) 11
2.5.7 雙極板(Bipolar Plates, BP) 12
2.5.8 集電板(Current Collector) 13
2.5.9 膜電極組(Membrance Electrode Assembly, MEA) 13
2.6 氧氣還原反應 15
2.7 電子轉移數 16
2.8 非貴重金屬觸媒 17
2.9 氮摻雜於碳材料 17
2.10 三乙烯四胺應用於觸媒 17
第三章 實驗 18
3.1 實驗藥品 18
3.2 儀器設備 21
3.3 實驗步驟 24
3.3.1 觸媒前驅物製備 24
3.3.2 不同鍛燒溫度之觸媒製備 24
3.4 線性掃描福安法(LSV)測定 26
3.5 膜電極組(MEA)製作及分析 28
3.5.1 陰離子交換膜活化 28
3.5.2 觸媒漿料製備 28
3.5.3 觸媒層與氣體擴散層製備 28
3.5.4 膜電極組裝 28
3.5.5 MEA單電池效率分析 29
第四章 結果與討論 30
4.1 官能基分析(FTIR) 30
4.2 熱重量分析(TGA) 32
4.3 型態分析 33
4.3.1 掃描式電子顯微鏡(SEM)分析 33
4.3.2 掃描式電子顯微鏡之能量色散X-射線光譜分析(EDS, Mapping) 34
4.3.3 穿透式電子顯微鏡(TEM)分析 38
4.4 結晶性分析(XRD) 39
4.5 表面性質分析(BET) 40
4.6 體積電阻值分析 43
4.7 有序性分析(Raman) 44
4.8 循環伏安法測試(Cyclic Voltammetry, CV) 45
4.9 線性伏安法測試(Linear Sweep Voltammetry, LSV) 46
4.10 電池轉移數與塔佛斜率 47
4.11 耐久性測試 50
4.12 單電池分析 51
第五章 結論 52
第六章 參考文獻 53


[1] V. Jose, A. Jayakumar, J.M. Lee, Bimetal/Metal Oxide Encapsulated in Graphitic Nitrogen Doped Mesoporous Carbon Networks for Enhanced Oxygen Electrocatalysis, ChemElectroChem, 6 (2019) 1485-1491.
[2] Z. Du, P. Yu, L. Wang, C. Tian, X. Liu, G. Zhang, H. Fu, Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery, Science China Materials, 63 (2020) 327-338.
[3] B. Soltani, N.-E. Benchouia, Fuel Cells and Hydrogen Storage: Challenges Facing Vehicle Manufacturers, (2019).
[4] J. Walkowiak-Kulikowska, J. Wolska, H. Koroniak, Polymers application in proton exchange membranes for fuel cells (PEMFCs), 2 (2017).
[5] S. George, N. Sehgal, K.P.S. Rana, V. Kumar, A comprehensive review on modelling and maximum power point tracking of PEMFC, Cleaner Energy Systems, 3 (2022) 100031.
[6] 江文鉅、林永清, 綠色能源科技─淺談燃料電池, 2006.
[7] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 35 (2010) 9349-9384.
[8] G. Das, J.-H. Choi, P.K.T. Nguyen, D.-J. Kim, Y.-S. Yoon, Anion Exchange Membranes for Fuel Cell Application: A Review, Polymers, 14 (2022) 1197.
[9] J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Springer London, 2008.
[10] N.A. Rosli, K.S. Loh, W.Y. Wong, R.M. Yunus, T.K. Lee, A. Ahmad, S.T. Chong, Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids, International Journal of Molecular Sciences, 2020.
[11] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56 (2005) 9-35.
[12] X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design, Chem, 5 (2019) 1486-1511.
[13] A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy Environ. Sci., 4 (2011) 1238-1254.
[14] C. Liu, C.-c. Sung, A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies, J. Power Sources, 220 (2012) 348-353.
[15] R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, npj Computational Materials, 5 (2019) 78.
[16] L. Dai, Y. Xue, L. Qu, C. Hyun-Jung, J.-B. Baek, Metal-Free Catalysts for Oxygen Reduction Reaction, Chemical reviews, 115 (2015).
[17] B. Dasari, V. Parthiban, A. Sahu, K. Ramesha, Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application, Bulletin of Materials Science, 44 (2021).
[18] G. Zhang, Q. Wei, X. Yang, A. Tavares, S. Sun, RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution, Applied Catalysis B: Environmental, 206 (2017).
[19] Y. Su, Y. Zhu, X. Yang, J. Shen, J. Lu, X. Zhang, J. Chen, C. Li, A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells, Industrial & Engineering Chemistry Research, 52 (2013) 6076-6082.
[20] J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G.E. Sterbinsky, Z. Feng, D. Su, K.L. More, G. Wang, Z. Wang, G. Wu, Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells, Nature Catalysis, 1 (2018) 935-945.
[21] J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra, Nano Letters, 10 (2010) 638-644.
[22] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science (New York, N.Y.), 323 (2009) 760-764.
[23] X. Zhou, S. Tang, Y. Yin, S. Sun, J. Qiao, Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells, Applied Energy, 175 (2016) 459-467.
[24] X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, G. Wu, X. Li, Directly Converting Fe−doped Metal-Organic Frameworks into Highly Active and Stable Fe−N-C Catalysts for Oxygen Reduction in Acid, Nano Energy, 25 (2016).
[25] X. Tian, M. Zhou, M. Li, C. Tan, L. Liang, P. Su, Nitrogen-doped activated carbon as metal-free oxygen reduction catalyst for cost-effective rolling-pressed air-cathode in microbial fuel cells, Fuel, 223 (2018) 422-430.
[26] H.-J. Zhang, X. Yuan, Z.-F. Ma, W. Wen, J. Yang, Investigation of Non-Precious Metal CoN4-Based Oxygen Reduction Catalyst by Electrochemical and X-ray Absorption Spectroscopy Techniques, Journal of The Electrochemical Society, 161 (2014) H155.
[27] H.-J. Zhang, X. Yuan, W. Wen, D.-Y. Zhang, L. Sun, Q.-Z. Jiang, Z.-F. Ma, Electrochemical performance of a novel CoTETA/C catalyst for the oxygen reduction reaction, Electrochemistry Communications, 11 (2009) 206-208.
[28] R. Raza, F. Ahmed, A. Khan, M. Iftikhar, S.M. Abbas, S. Ali, Effect of metal-reinforced UV-O3-TETA functionalized MWCNTs on thermomechanical and radiation-resistant properties of PMMA, Materials Today Communications, 24 (2020) 101181.


電子全文 電子全文(網際網路公開日期:20280731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊