跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:繆佳龍
研究生(外文):MIAO,CHIA-LONG
論文名稱:以亞胺架橋之殼聚醣鍛燒成鈷碳氮化合物用於陰離子交換膜燃料電池陰極觸媒之研究
論文名稱(外文):Calcined cobalt chelated, imine-crosslinked chitosan as the cathode catalysts of an anion exchange membrane fuel cells.
指導教授:何國賢何國賢引用關係
指導教授(外文):HO,KO-SHAN
口試委員:張美濙黃文堯謝達華何國賢
口試委員(外文):CHANG,MEI-YINGHUANG,WEN-YAOHSIEH,TAR-HWAHO,KO-SHAN
口試日期:2023-07-17
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:86
中文關鍵詞:殼聚醣觸媒硝酸鈷對苯二甲醛陰離子交換膜燃料電池
外文關鍵詞:ChitosanCatalystCobalt nitratep-phenylenediamineAnion Exchange Membrane Fuel Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1-3 研究架構 3
第二章 文獻回顧 4
2.1 燃料電池之歷史及發展 4
2.2 燃料電池發電相關原理 6
2.3燃料電池的優點 7
2.4 燃料電池的種類 8
2.5 陰離子交換膜燃料電池 (AEMFC) 14
2.5.1. 陰離子交換膜燃料電池介紹 14
2.5.2. 陰離子交換膜燃料電池之工作原理 15
2.5.3. 燃料電池極化 16
2.5.4. 陰離子交換膜燃料電池之構造及元件 18
2.5.5. 陰離子交換膜 (Anion Exchange Membrane;AEM) 19
2.5.6. 觸媒層 (Catalyst Layer;CL) 20
2.5.7. 氣體擴散層 (Gas Diffusion Layer;GDL) 21
2.5.8. 雙極板 (Bipolar Plates;BP) 22
2.5.9. 氣密墊片 22
2.5.10. 集電板 (Current Collector) 23
2.5.11. 膜電極組 (Membrane Electrode Assembly;MEA) 24
2.6 氧氣還原反應(Oxygen Reduction Reaction;ORR) 26
2.7 電子轉移數 26
2.8 非貴金屬觸媒 27
2.9 氮摻雜於碳材料 29
2.10 殼聚醣 30
2.10.1. 殼聚醣介紹 30
2.10.2. 殼聚醣磺化 31
2.10.3. 殼聚醣磷酸化 32
2.10.4. 殼聚醣四級胺化 33
2.10.5. 殼聚醣亞胺化 33
2.10.6. 殼聚醣特性表 34
2.10.7. 殼聚醣陰極觸媒相關文獻 35
第三章 研究材料與實驗方法 36
3.1 實驗藥品 36
3.2 實驗儀器 38
3.3 實驗步驟 41
3.3.1. 觸媒製備流程 41
3.3.2. 不同鍛燒溫度之觸媒製備 41
3.4 線性掃描伏安法(LSV)測定 44
3.5膜電極組(MEA)製作 45
3.5.1. 陰離子子交換膜之前處理 45
3.5.2. 觸媒漿料配製 45
3.5.3. 氣體擴散層電極製作 (GDE,Gas diffusion electrolyte) 45
3.6 燃料電池之單電池測試 46
3.6.1 燃料電池單電池組裝 46
3.6.2 燃料電池測試 46
第四章 結果與討論 47
4.1 官能基分析 (FTIR) 47
4.2 熱重量分析 (TGA) 49
4.3 表面型態分析 50
4.3.1 SEM分析 50
4.3.2 SEM 之能量色散X-射線光譜分析 (EDS,mapping) 51
4.3.3 TEM 分析 (Transmission Electron Microscopy) 54
4.4 結晶性分析 (XRD) 56
4.5 表面性質分析(BET) 57
4.6 體積電阻分析 59
4.7 有序性分析 (Raman) 60
4.8 電化學分析 61
4.8.1 線性掃描伏安法 (Liner sweep Voltammetry ; LSV) 61
4.8.2 循環伏安法 (Cyclic Voltammetry ; CV) 62
4.8.3 電子轉移數與塔佛斜率 63
4.8.4 耐久度測試 64
4.8.5 單電池分析 65
第五章 結論 66
第六章 參考文獻 67

[1] Mamlouk M, Manolova M. Chapter 6. Alkaline anionic exchange membrane water electrolysers. Electrochemical methods for hydrogen production. (2019). p. 180-252.
[2] 楊顯整, 燃料電池應用與產業發展現況,綠機會通訊, (2012).
[3] Askaripour H. Effect of operating conditions on the performance of a PEM fuel cell. Int J Heat Mass Tran 2019;144:118705.
[4] Ikram, Saiqa Ahmed, Shakeel Wazed Ali, S. Agarwal, Himanshu. Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications, Organic-Inorganic Composite Polymer Electrolyte Membranes. (2017).Chapter 15:381-398
[5] Hammi, N.Chen, S.Dumeignil, F.Royer, S.El Kadib, A.. Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses, (2020).
[6] Bossell U. The birth of the Fuel Cell 1835–1845. Power for the 21st century
2004;1:7.
[7] Andújar, J. M.Segura, F. Fuel cells: History and updating. A walk along two centuries,(2009).
[8] Wee JH. Applications of proton exchange membrane fuel cell systems. Renewable
and Sustainable Energy Reviews 2007;11(8):1720–38.
[9] 北美智權報http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_220608_0702.htm.
[10] Ferriday, T. B. Middleton, Peter Hugh, Alkaline fuel cell technology - A review, (2021).
[11] Breeze, Paul, The Phosphoric Acid Fuel Cell, (2017).
[12] Das, Suparna,Dutta, Kingshuk,Nessim, Gilbert Daniel,Kader, M. Abdul, Introduction to direct methanol fuel cells, (2020) .
[13] Cassir, Michel,Ringuedé, Armelle,Lair, Virginie, Molten Carbonates from Fuel Cells to New Energy Devices: Molten Salts Chemistry, (2013) 355-371.
[14] Ghadrdan, Maryam, Toward a systematic control design for solid oxide fuel cells, Design and Operation of Solid Oxide Fuel Cells, (2020) 217-253.
[15] Breeze, Paul, The Proton Exchange Membrane Fuel Cell, Fuel Cells, (2017) 33-43.
[16] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the
proton exchange membranes for fuel cell applications, International
Journal of Hydrogen Energy 35(17) (2010) 9349-9384.
[17] Collins, John Gourdin, Gerald Qu, Deyang, Modern Applications of Green Chemistry, Green Chemistry, (2018) 771-860.
[18] Daimler AG,Howaldtswerke Deutsche Werft GmbH, Toyota, TU¨V Su¨d Industrie Service GmbH. Reproduced from Kurzweil P (2003) Brennstoffzellentechnik (Fuel Cell Technology).
[19] Vijayakumar, Vijayalekshmi,Khastgir, Dipak, Polymeric composite membranes for anion exchange membrane fuel cells, Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, (2020) 365-381.
[20] Huanhuan Chen, Ran Tao, Ki-Taek Bang, Minhua Shao, Yoonseob Kim, Aion Exchange Membranes for Fuel Cells:States-of-the-Art and Perspectives, Advanced Energy Materials 12(28)(2022).
[21] Ren, Peng,Pei, Pucheng,Li, Yuehua,Wu, Ziyao,Chen, Dongfang,Huang, Shangwei, Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions, Progress in Energy and Combustion Science 80 (2020)100859.
[22] X.Z. Yuan, C. Nayoze-Coynel, N. Shaigan, D. Fisher, N.N. Zhao, N.
Zamel, P. Gazdzicki, M. Ulsh, K.A. Friedrich, F. Girard, U. Groos, A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components,
Journal of Power Sources 491 (2021).
[23] K. Scott, Membrane electrode assemblies for polymer electrolyte membrane fuel cells, Functional Materials for Sustainable Energy Applications, (2012) 279-311.
[24] G. Zhang, Q. Wei, X. Yang, A.C. Tavares, S. Sun, RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in
alkaline solution, Applied Catalysis B: Environmental 206 (2017) 115-126.
[25] I. Cruz-Reyes, B. Trujillo-Navarrete, K. García-Tapia, M. Salazar-Gastélum, F. Paraguay-Delgado, R. Félix-Navarro, Pd/MnO2 as a bifunctional electrocatalyst for potential application in alkaline fuel cells,
Fuel 279 (2020) 118470.
[26] D. Bosubabu, V. Parthiban, A. Sahu, K. Ramesha, Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application, Bulletin of Materials Science 44(2) (2021) 1-7.
[27] Álvarez-Manuel, Laura,Alegre, Cinthia,Sebastián, David,Eizaguerri, Alberto,Napal, Pedro F. Lázaro, María J. N-doped carbon xerogels from urea-resorcinol-formaldehyde as carbon matrix for Fe-N-C catalysts for oxygen reduction in fuel cells, Catalysis Today 418 (2023)114067
[28] Lin, R. Cai, X. Zeng, H. Yu, Z, Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions, Adv Mater 30(17) (2018)e1705332.
[29] L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction, Chem. Rev. 115 (2015) 4823–4892.
[30] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygenreduction activity and durability of nitrogen-doped graphene, Energy Environ. Sci.4 (2011) 760–764.
[31] H.J. Zhang, Q.Z. Jiang, L. Sun, X. Yuan, Z. Shao, Z.F. Ma, 3D non-precious metalbased electrocatalysts for the oxygen reduction reaction in acid media, Int. J.
Hydrog. Energy 35 (2010) 8295–8302.
[32] Yaengthip, P. Siyasukh, A. Payattikul, L. Kiatsiriroat, T. Punyawudho, K., The ORR activity of nitrogen doped-reduced graphene oxide below decomposition temperature cooperated with cobalt prepared by strong electrostatic adsorption technique, Journal of Electroanalytical Chemistry 915 (2022) 116366.
[33] C.K.S. Pillai, Willi Paul, Chandra P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science,34(7) (2009) 641–678.
[34] Rakshana Jayakumar, S. V. Nair, Tetsuya Furuike, Hiroshi Tamura, Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering, Tissue Engineering (2010) .
[35] Jayakumar, R., Selvamurugan, N., Nair, S.V., Tokura, S. and Tamura, H, Preparative Methods of Phosphorylated Chitin and Chitosan, International Journal of Biological Macromolecules, 43, (2008)221-225
[36] Tadashi Uragami, Tomoyuki Aketa, Satoko Gobodani, Mizuho Sugihara, Studies of syntheses and permeabilities of special polymer membranes, Polymer Bulletin 15 (1986) 101–106.
[37] R. Antony, T. Arun, S.T.D. Manickam, International Journal of Biological Macromolecules 129 (2019) 615-633.
[38] Hammi, N. Chen, S. Dumeignil, F. Royer, S. El Kadib, A., Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses, Materials Today Sustainability 10 (2020) 100053.
[39] Yuetao Liu, Wenqian Xu, GuoHong Wang , Xuemei Qin, Material basis research for Huangqi Jianzhong Tang against chronic atrophic gastritis rats through integration of urinary metabonomics and SystemsDock, Journal of Ethnopharmacology 223 (15) (2018)1–9.
[40] Jianyu Huang,Yeru Liang, Hang Hu, Simin Liu,Yijin Cai,Hanwu Dong, Mingtao Zheng,Yong Xiao and Yingliang Liu, Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors, Journal of Materials Chemistry 47 (2017).
[41] Wulin Yanga, Xu Wang, Ruggero Rossi, Bruce E. Logan, Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells, Chemical Engineering Journal, 380 (2020)122522.
[42] A.S.P.Azzouz , T.S.Al-Ghabsha , A.N.Obed Agha, Determination of some imines structures derived from salicylaldehyde with phenylene diamines by physical methods, Chemistry department , College of education , Mosul University , IRAQ.
[43] Monitoring of Heterogeneously Catalyzed Hydrogenation of Imines by Coupled
ATR‐FTIR, UV/Vis, and Raman Spectroscopy, ChemCatChem 2(3) (2010) 273-
280.
[44] S. Wen, G. Huang, S. Wu, J. Li, A. Qu, Determinant factors of photocatalytic
hydrogen evolution activity for Schiff-base conjugated polymers, Chemical
Engineering Journal 374 (2019) 1055-1063.

電子全文 電子全文(網際網路公開日期:20280731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊