跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江亭瑩
研究生(外文):CHIANG, TING-YING
論文名稱:運用DEA衡量新冠疫情期間PPE產業之營運效率
論文名稱(外文):Using DEA to Measure the Operating Efficiency of the PPE Industry during the COVID-19 Pandemic
指導教授:余銘忠余銘忠引用關係
指導教授(外文):YU, MIN-CHUN
口試委員:廖光彬葉惠忠余銘忠
口試委員(外文):LIAO, KUA-PINGYEH, HUI-CHUNGYU, MIN-CHUN
口試日期:2023-06-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:企業管理系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:79
中文關鍵詞:個人防護設備產業資料包絡分析法麥氏生產力指數Tobin’s Q
外文關鍵詞:Personal Protective EquipmentData Envelopment AnalysisMalmquist Productivity IndexTobin’s Q
相關次數:
  • 被引用被引用:2
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
2019年底新冠病毒爆發使得全球經濟與產業遭受前所未有的衝擊,唯獨個人防護設備(Personal Protective Equipment, PPE)產業逆勢中成長,PPE是以保護個人生命安全為目的的穿戴產品,而以不織布為核心原料之防疫備品-口罩、隔離衣及防護衣,始終無法滿足暴增之需求,以往臺灣在上述防疫用品約八至九成皆仰賴中國進口,幸虧在政府的號召,這群不織布或成衣業者卸下手邊工作成為口罩及隔離衣、防護衣國家隊之成員,肩起解決臺灣PPE需求不足之責任,同時這些業者正面臨夕陽產業轉型之苦。

本研究透過台灣經濟新報資料庫(TEJ)彙整公開資料,再運用資料包絡分析法(DEA)之超效率差額基礎模型(Super efficiency of Slack-Based Measure, Super SBM)模型、Malmquist生產力指數以及Tobin’s Q衡量11家擔任口罩國家隊及防護衣和隔離衣國家隊的成員,又或自發性生產之PPE業者其營運效率,以營業費用及資產為投入項,營業收入淨額、營業毛利以及稅後淨利為產出項,分析2017至2021年新冠疫情期間各業者經營效率及生產力之變化。

研究結果顯示,2017年至2021年五年間有六間企業為相對有效率,其中五間更是具有超效率,為其他無效率企業之學習標竿,但因疫情延伸的問題包含海外工廠停工、訂單劇減等等以及其他國際情勢,仍對於企業有所衝擊。Malmquist生產力指數分析顯示,由於各企業仍處於轉型中,因此五年之間整體PPE產業生產力與技術效率呈衰退,技術方面卻持續進步往前。此外,Tobin’s Q衡量結果顯示,每個年度的平均Tobin’s Q值均大於1,表示整體產業績效與產業價值皆表現良好,而影響各企業Q值高低,部分原因可能由股價所導致。

At the end of 2019, the outbreak of the COVID-19 virus caused an unprecedented impact on the global economy and industries. However, the Personal Protective Equipment (PPE) industry experienced a counter-trend growth. PPE refers to wearable products designed to protect personal safety, with non-woven fabric as the core material for epidemic prevention supplies such as masks, isolation gowns, and protective clothing. The demand for these items surged, and previously, Taiwan relied on China for about 80-90% of the epidemic prevention supplies that mentioned before. Fortunately, in response to the government's call, non-woven fabric and garment manufacturers shifted their focus to become members of the national team for producing masks, isolation gowns, and protective clothing, shouldering the responsibility of addressing Taiwan's insufficient PPE supply. At the same time, these manufacturers are facing the challenges of transitioning from sunset industries.

This study utilized the Taiwan Economic Journal (TEJ) database to gather publicly available data. It employed the Super SBM model of Data Envelopment Analysis (DEA), Malmquist productivity index, and Tobin's Q to measure the operational efficiency, productivity trend, and financial performance of 11 members of the national teams producing masks, protective clothing, and isolation gowns. The inputs in this study included operating expenses and assets, while outputs consisted of net operating revenue, gross operating profit, and after-tax net profit. The analysis focused on the changes in operational efficiency and productivity of these entities during the period from 2017 to 2021, amidst the COVID-19 pandemic.

The results of this research indicate that over the five-year period from 2017 to 2021, there were six companies that exhibited relative efficiency, with five of them even achieving super efficiency. These companies serve as benchmarks for other inefficient enterprises to learn from. However, they still faced challenges due to the extension of the pandemic, including overseas factory closures, drastic reduction in orders, and other international situations.

In terms of the Malmquist productivity index analysis, the overall productivity and technical efficiency of the PPE industry declined over the five-year period due to ongoing transformation efforts by various companies. However, there was continuous progress in terms of technological advancements. According to the results measured by Tobin's Q, the average Tobin's Q for each year was greater than 1, indicating favorable overall industry performance and industry value. The variations in Tobin’s Q among different companies may be partially attributed to stock prices.

目錄
中文摘要..........................I
ABSTRACT..........................II
誌謝..........................IV
目錄..........................V
表目錄..........................VI
圖目錄..........................VII
第一章 緒論..........................1
第一節 研究背景..........................1
第二節 研究動機..........................5
第三節 研究目的..........................7
第四節 研究流程..........................8
第二章 文獻探討..........................9
第一節 績效衡量之相關文獻..........................9
第二節 DEA衡量企業績效之相關文獻..........................13
第三節 Tobin’s Q衡量企業績效之相關文獻..........................20
第三章 研究方法..........................22
第一節 研究架構..........................22
第二節 DEA模型..........................23
一、CCR 模型..........................24
二、BCC 模型..........................27
三、SBM 模型..........................29
四、Super SBM 模型..........................32
第三節 Malmquist生產力指數..........................34
第四節 Tobin’s Q 市場價值..........................35
第四章 研究結果與分析..........................36
第一節 樣本資料與投入項和產出項之選取..........................36
一、樣本資料..........................36
二、投入項和產出項選取與定義..........................37
第二節 效率分析..........................42
一、Super SBM效率值..........................42
二、差額變數分析..........................43
三、Malmquist生產力指數..........................53
第三節 Tobin’s Q分析..........................56
第五章 結論與建議..........................64
第一節 研究結論..........................64
第二節 管理意涵..........................67
第三節 未來研究之建議..........................69
參考文獻 70



表目錄
表1-1 DEA文獻之統整..........................17
表1-1 DEA文獻之統整(續)..........................18
表4-1 本研究所選取之樣本..........................37
表4-2 過去紡織相關產業文獻所使用之投入及產出項..........................38
表4-2 過去紡織相關產業文獻所使用之投入及產出項(續)..........................39
表4-3 投入及產出項之定義..........................40
表4-4 投入及產出項之相關分析..........................41
表4-5 SUPER SBM效率值..........................43
表4-6 DMU A之差額變數分析..........................44
表4-7 DMU B之差額變數分析..........................45
表4-8 DMU C之差額變數分析..........................45
表4-9 DMU D之年差額變數分析..........................46
表4-10 DMU E之差額變數分析..........................47
表4-11 DMU F之差額變數分析..........................47
表4-12 DMU G之差額變數分析..........................48
表4-13 DMU H之差額變數分析..........................49
表4-14 DMU I之差額變數分析..........................50
表4-15 DMU J之差額變數分析..........................51
表4-16 DMU K之差額變數分析..........................52
表4-17 2017~2021年技術效率變動分析..........................53
表4-18 2017~2021年技術變革分析..........................54
表4-19 2017~2021年Malmquist生產力指數分析..........................55
表4-20 2017~2021年Tobin’s Q分析..........................56



圖目錄
圖1-1 研究流程..........................8
圖3-1 研究架構圖..........................22
圖3-2 CCR效率前緣..........................24
圖4-1 2017~2021年臺灣PPE產業之Tobin’s Q年度平均值..........................57
圖4-2恆大之Tobin’s Q值趨勢變化..........................58
圖4-3年興之Tobin’s Q值趨勢變化..........................58
圖4-4宏遠之Tobin’s Q值趨勢變化..........................59
圖4-5南緯之Tobin’s Q值趨勢變化..........................59
圖4-6台南之Tobin’s Q值趨勢變化..........................60
圖4-7儒鴻之Tobin’s Q值趨勢變化..........................60
圖4-8聚陽之Tobin’s Q值趨勢變化..........................61
圖4-9如興之Tobin’s Q值趨勢變化..........................61
圖4-10興采之Tobin’s Q值趨勢變化..........................62
圖4-11南六之Tobin’s Q值趨勢變化..........................62
圖4-12康那香之Tobin’s Q值趨勢變化..........................63




一、中文文獻
1.王世維(2009)。工廠管理績效評估之研究-以紡紗工廠為例〔碩士論文〕。長榮大學。
2.王媛慧、李文福(2006)。我國大學院校技術效率之研究-資料包絡分析法的應用,輔仁管理評論,13(1),163-185。
3.王震宇(2006)。財務性與非財務性績效衡量指標之運用-整合衡量指標與工具 發揮績效管理之效益,會計研究月刊,250,60-63。
4.矢井田修(1994)。不織布,繊維学会誌,50(6),256-259。
5.吳怡萱、蔡鼎妍(2021)。國際貨櫃海運公司之生態效益初探-以資料包絡分析法SBM模型進行之績效分析,船舶科技,54,1-30。
6.吳婕妤(2004)。交通執法績效評估模型之建構〔碩士論文〕。國立交通大學。
7.呂正華(2020)。跨域合作打造口罩國家隊,國土及公共治理季刊,8(4),38-45。
8.李明源、莊素增、林靖傑(2015)。ECFA對台灣經營績效之影響-以汽車相關產業為例,華人經濟研究,13(1),39-54。
9.李錦興(2011)。應用資料包絡分析法探討上市棉紡紗公司之經營績效〔碩士論文〕。國立臺灣海洋大學。
10.沈培德(2013)。產業用紡織品,科學發展,487,16-22。
11.林文晟、沈群英、梁榮輝(2009)。整合性財務分析觀點導入企業標竿管理之研究:以台灣紡織業為例,全球管理與經濟,5(2),1-14。
12.林民頤(2010)。遠東集團多角化經營策略與績效探析〔碩士論文〕。國立交通大學。
13.翁興利、李豔玲、潘婉如(1996)。相對效率之衡量:DEA之運用,中國行政評論,5(4),63-106。
14.張建一(2020)。新冠肺炎疫情對全球經濟的影響與因應,兩岸經貿,342,8-11。
15.張朝富(2018)。外匯在銀行效率扮演角色之研究-SUPER SBM及MALMQUIST生產力指數〔碩士論文〕。東吳大學。
16.張錫介(2005)。金融控股公司法實施對國內銀行業經營效率與生產力影響之分析,朝陽商管評論,4(2),93-126。
17.陳子文(2021)。以資料包絡分析法探討台灣紡織成衣業之經營績效〔碩士論文〕。國立成功大學。
18.陳永琦(2016)。SBM-DEA模型在評估農會信用部經營效率之應用,明新學報,42(2),103-117。
19.陳依蘋(2004)。平衡計分卡運用與趨勢-創始人Robert Kaplan來台演講內容精要策略核心組織聚焦且協調一致,會計研究月刊,224,68-82。
20.陳彥萍(2021)。應用動態DEA評估臺灣紡織業經營績效〔碩士論文〕。佛光大學。
21.陳振東、王怜惠、吳雅倩、倪爾瑾、王冠婷(2016)。應用平衡計分卡與區間語意變數於企業績效評估模式建構之研究,臺灣企業績效學刊,9(2),87-105。
22.齊郁萍(2017)。台灣與韓國紡織產業競爭力與績效評估─紡紗與織布廠商為例〔碩士論文〕。致理科技大學。
23.劉定焜、張寶文(2011)。效率、績效衡量與決定因素之探討-台灣金融產業的實證研究,台灣金融財務季刊,12(3),23-67。
24.歐進士、趙令海、洪嘉聲、林惠美(2012)。實施全民健康保險對醫院經營效率影響之研究,臺大管理論叢,22(2),253-275。
25.蔡美英、蔡明智、薄喬萍、魏乃捷(2016)。以二階段資料包絡分析衡量紡織產業之經營效率與市場能力,高雄應用科技大學人文與社會科學學刊,2(2),33-48。
26.鄭凱文(2010)。長期投資類型與公司績效之研究-以台灣電子產業為例 〔碩士論文〕。國立交通大學。
27.瞿宛文(2008)。重看臺灣棉紡織業早期的發展,新史學,19(2),167-197。
28.簡禎富(2015)。決策分析與管理:紫式決策分析以全面提升決策品質。雙葉書廊有限公司。
29.蘇雄義、林桓、張芳慈、石尊元(2009)。台灣個人防護裝備類防疫物資供應商現況之調查研究,台灣衛誌,28(3),248-254。



二、英文文獻
1.Akbar-Khanzadeh, F. (1998). Factors contributing to discomfort or dissatisfaction as a result of wearing personal protective equipment. Journal of human ergology, 27(1-2), 70-75.
2.Aldamak, A., & Zolfaghari, S. (2017). Review of efficiency ranking methods in data envelopment analysis. Measurement, 106, 161-172.
3.Al-Matari, E. M., Al-Swidi, A. K., & Fadzil, F. H. B. (2014). The measurements of firm performance's dimensions. Asian Journal of Finance & Accounting, 6(1), 24.
4.Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261-1264.
5.Ang, J. S., & Beck, K. L. (2000). A comparison of marginal and average Tobin's Q ratios. International Journal of Business, 5(1), 27-55.
6.Avkiran, N. K., Tone, K., & Tsutsui, M. (2008). Bridging radial and non-radial measures of efficiency in DEA. Annals of Operations Research, 164(1), 127-138.
7.Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
8.Bowlin, W. F. (1998). Measuring performance: An introduction to data envelopment analysis (DEA). The Journal of Cost Analysis, 15(2), 3-27.
9.Burki, T. (2020). Global shortage of personal protective equipment. The Lancet Infectious Diseases, 20(7), 785-786.
10.Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414.
11.Chandra, P., Cooper, W. W., Li, S., & Rahman, A. (1998). Using DEA to evaluate 29 Canadian textile companies—considering returns to scale. International Journal of Production Economics, 54(2), 129-141.
12.Chang, W. C., Tung, Y. C., Huang, C. H., & Yang, M. C. (2008). Performance improvement after implementing the Balanced Scorecard: A large hospital's experience in Taiwan. Total Quality Management, 19(11), 1143-1154.
13.Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
14.Chi, D. J., & Hung, H. F. (2011). Is the balanced scorecard really helpful for improving performance? Evidence from software companies in China and Taiwan. African Journal of Business Management, 5(1), 224.
15.Chung, K. H., & Pruitt, S. W. (1994). A simple approximation of Tobin's Q. Financial Management, 23(3),70-74.
16.Chung, K. H., & Pruitt, S. W. (1996). Executive ownership, corporate value, and executive compensation: A unifying framework. Journal of Banking & Finance, 20(7), 1135-1159.
17.Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Handbook on data envelopment analysis. Springer.
18.Der-Jang, C., & Hsu-Feng, H. (2011). Is the balanced scorecard really helpful for improving performance? Evidence from software companies in China and Taiwan. African Journal of Business Management, 5(1), 224-239.
19.Duman Altan, A., & Gülen, K. G. (2020, September). Performance Evaluation in the Firms of Turkish Textile Sector. In The International Symposium for Production Research (pp. 558-568). Springer, Cham.
20.Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 84(1), 66-83.
21.Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
22.Fu, L., Singhal, R., & Parkash, M. (2016). Tobin's q ratio and firm performance. International Research Journal of Applied Finance, 7(4), 1-10.
23.Ghalayini, A. M., & Noble, J. S. (1996). The changing basis of performance measurement. International Journal of Operations & Production Management, 16(8), 63-80.
24.Golany, B., & Roll, Y. (1989). An application procedure for DEA. Omega, 17(3), 237-250.
25.Gomes, J., & Romão, M. (2014, February). Advantages and limitations of performance measurement tools: The balanced scorecard. In 7th IADIS Information Systems 2014 Conference (IS 2014).
26.Heenetigala, K., & Armstrong, A. F. (2011, December). The impact of corporate governance on firm performance in an unstable economic and political environment: Evidence from Sri Lanka. In 2012 Financial Markets & Corporate Governance Conference.
27.Holland, M. G., & Cawthon, D. (2015). Personal protective equipment and decontamination of adults and children. Emergency Medicine Clinics, 33(1), 51-68.
28.Ittner, C. D., & Larcker, D. F. (2003). Coming up short on nonfinancial performance measurement. Harvard Business Review, 81(11), 88-95.
29.Kaplan, R. S., & Norton, D. P. (2005). The balanced scorecard: measures that drive performance. Harvard Business Review, 83(7), 172.
30.Kellen, V., & Wolf, B. (2003). Business performance measurement. Information Visualization, 1(312), 1-36.
31.Lebas, M., & Euske, K. (2002). A conceptual and operational delineation of performance. Business Performance Measurement: Theory and Practice, Cambridge, Andy Neely, 65-79.
32.Lee, H. S. (2021). An integrated model for SBM and Super-SBM DEA models. Journal of the Operational Research Society, 72(5), 1174-1182.
33.Lindenberg, E. B., & Ross, S. A. (1981). Tobin's q ratio and industrial organization. Journal of Business, 54(1), 1-32.
34.Low, J., & Siesfeld, T. (1998). Measures that matter: Non‐financial performance. Strategy & Leadership, 26(2), 24-38.
35.Mali, D., & Lim, H. J. (2022). Does relative (absolute) efficiency affect capital costs?. Annals of Operations Research, 315(2), 1037-1060.
36.Neely, A., Gregory, M., & Platts, K. (1995). Performance measurement system design: a literature review and research agenda. International Journal of Operations & Production Management, 15(4), 80-116.
37.Nguyen, T. K. L., Nguyen, X. H., & Pham, H. V. (2022). An Application of the Negative Malmquist Model for Vietnamese Garment and Textiles Industry. Management Systems in Production Engineering, 30(1), 74-79.
38.Nyhan, R. C., & Martin, L. L. (1999). Comparative performance measurement: A primer on data envelopment analysis. Public Productivity & Management Review, 22(3), 348-364.
39.Pecinova, Z., Lostakova, H., & Havranek, P. (2012). The Company Performance from the Point of View of the Customers in the Context of the Company Performance. In Congress Proceedings: Carpathian Logistics Congress ,723-730.
40.Rahman, P. N. A., Kam, A. L. E. X. A. N. D. E. R., Azmi, A. R. I. N. A., & Zasra, R. A. D. I. A. S. (2022). History of PPE: Special Reference to Beaked Masks During the Black Death and Its Aftermath. Akademika, 92(1), 137-150.
41.Rompho, N. (2011). Why the balanced scorecard fails in SMEs: A case study. International Journal of Business and Management, 6(11), 39.
42.Saif Ul Islam, M., Meo, M. S., & Usman, M. (2022). The relationship between corporate investment decision and firm performance: Moderating role of cash flows. Journal of Public Affairs, 22(2), 2445-2455.
43.Stivers, B. P., Covin, T. J., Hall, N. G., & Smalt, S. W. (1998). How nonfinancial performance measures are used. Strategic Finance, 79(8), 44.
44.Taouab, O., & Issor, Z. (2019). Firm performance: Definition and measurement models. European Scientific Journal, 15(1), 93-106.
45.Tennant, C., & Tanoren, M. (2005). Performance management in SMEs: a Balanced Scorecard perspective. International Journal of Business Performance Management, 7(2), 123-143.
46.Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509.
47.Tone, K. (2002). A Slacks-Based Measure of Super-Efficiency in Data Envelopment Analysis. European Journal of Operational Research, 130, 498.
48.Wang, G., Li, K. X., & Xiao, Y. (2019). Measuring marine environmental efficiency of a cruise shipping company considering corporate social responsibility. Marine Policy, 99, 140-147.
49.Zofio, J. L. (2007). Malmquist productivity index decompositions: a unifying framework. Applied Economics, 39(18), 2371-2387.

三、網路資料
1.ISO 9092:1988 (1988, 04). https://www.iso.org/standard/16681.html
2.Wikipedia (2023, 05). https://en.wikipedia.org/wiki/Plague_doctor_costume
3.World Trade Organization (2020). World Trade Statistical Review 2020. https://www.wto.org/english/res_e/statis_e/wts2020_e/wts20_toc_e.htm
4.World Trade Organization (2021). World Trade Statistical Review 2021. https://www.wto.org/english/res_e/statis_e/wts2021_e/wts21_toc_e.htm
5.中華民國對外貿易發展協會(2020年12月)。新冠疫情下口罩及防護衣全球市場概況。https://osws.taitra.org.tw/001/Upload/454/relfile/10363/12210/e78a2f0c-8f89-4166-ac31-3d23a9d25330.pdf
6.台灣區不織布工業同業公會(2022年01月18日)。世界不織布製造廠銷售額、排名前40強(2020)。台灣區不織布工業同業公會。https://www.nonwoven.org.tw/index.php?Act=0&SK=12482&MK=10636&PK=5345#
7.技術處(2021年12月08日)。絲柔親膚超細纖維不織布創新應用[成果新知]。經濟部技術處。https://www.moea.gov.tw/MNS/doit/bulletin/Bulletin.aspx?kind=4&html=1&menu_id=13553&bull_id=9558
8.紡拓會市場開發處(2017年11月)。成衣及家用紡織品用不織布:四大供應商簡介。http://monitor.textiles.org.tw/doc/%E5%B0%88%E9%A1%8C%E5%A0%B1%E5%91%8A(%E7%B6%B2%E7%AB%99%E7%94%A8)/%E6%88%90%E8%A1%A3%E5%92%8C%E5%AE%B6%E7%94%A8%E7%B4%A1%E7%B9%94%E5%93%81%E7%94%A8%E4%B8%8D%E7%B9%94%E5%B8%83%EF%BC%9A%E5%9B%9B%E5%A4%A7%E4%BE%9B%E6%87%89%E5%95%86%E7%B0%A1%E4%BB%8B(11%E6%9C%88%E7%B6%B2%E7%AB%99).pdf
9.紡拓會市場開發處(2022年06月)。111年1-4月我國紡織品進出口貿易概況。財團法人中華民國紡織業拓展會。https://www.textiles.org.tw/ttf/main/Trade/TradeInfo.aspx?menu_id=97
10.紡拓會(2022年04月)。2021年臺灣紡織工業概況。財團法人中華民國紡織業拓展會。https://www.textiles.org.tw/TTF/main/content/wHandMenuFile.ashx?file_id=1
11.速橋(2009年10月26日)。不織布。Money DJ理財網 財經知識庫。https://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=24da859d-93e1-4c86-b17d-c149cadc4c6f
12.彭杏珠(2021年10月12日)。這個「雞蛋、水餃股」產業,惦惦賺錢無人知!。遠見。https://www.gvm.com.tw/article/83179
13.黃台中(2018年08月16日)。台灣不織布產業的回顧與展望。工商時報。https://readers.ctee.com.tw/cm/20180816/a18aa18/916770/share
14.黃佩君(2020年02月26日)。紡織國家隊「傻勁十足」 滿手轉單中「擠」出醫護防護衣。自由時報。https://ec.ltn.com.tw/article/breakingnews/3080476

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊