|
參考文獻
1.Barber, B. M. and Odean, T. (2008). All That Glitters: The Effect of attention and news on the buying behavior of individual and institutional investors. Review of Financial Studies, Vol. 21, No. 2, pp. 785-818. 2.Chen, W. F., & Ku, L. W. (2018). Introduction to CSentiPackage Tools for Chinese Sentiment Analysis”, Journal of Library & Information Science, 44 (1), 24-41. 3.Costola, M., Hinz, O., Nofer, M., & Pelizzon, L. (2023). Machine learning sentiment analysis, COVID-19 news and stock market reactions. Research in International Business and Finance, 64, 101881. 4.Duan, J., Ding, X., Zhang, Y., & Liu, T. (2019). TEND: A target-dependent representation learning framework for news document. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(12), 2313-2325. 5.Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of twitter sentiment analysis methods, ACM Computing Surveys (CSUR), 49(2), 1-41. 6.Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989(102), 36. 7.Gu, C., & Kurov, A. (2020). Informational role of social media: Evidence from Twitter sentiment. Journal of Banking & Finance, 121, 10596. 8.Heston, S. L., & Sinha, N. R. (2017). News vs. sentiment: Predicting stock returns from news stories. Financial Analysts Journal, 73(3), 67-83. 9.Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. 10.Jiao, P., Veiga, A., & Walther, A. (2020). Social media, news media and the stock market. Journal of Economic Behavior & Organization, 176, 63-90. 11.Kanungsukkasem, N., & Leelanupab, T. (2019). Financial latent Dirichlet allocation (FinLDA): Feature extraction in text and data mining for financial time series prediction. IEEE Access, 7, 71645-71664. 12.Lee, H. S. (2020). Exploring the initial impact of COVID-19 sentiment on US stock market using big data. Sustainability, 12(16), 6648. 13.Mao, H., Counts, S., & Bollen, J. (2011). Predicting financial markets: Comparing survey, news, twitter and search engine data. arXiv, preprint arXiv:1112.1051. 14.Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv, arXiv :1301.3781v3. 15.Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. International Conference on Neural Information Processing Systems, Vol. 2 Pages 3111–3119. 2013. 16.Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., & Anastasiu, D. C. (2019) Stock price prediction using news sentiment analysis”, In 2019 IEEE fifth international conference on big data computing service and applications (BigDataService) (pp. 205-208). IEEE. 17.Ren, J., Long, J., and Xu, Z. (2019). Financial news recommendation based on graph embeddings. Decision Support Systems, Vol. 125, pp. 1-11. 18.Sawhney, R., Wadhwa, A., Agarwal, S., & Shah, R. (2021). FAST: Financial news and tweet based time aware network for stock trading. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, Main Volume (pp. 2164-2175). 19.Schumaker, R. P., Zhang, Y., Huang, C. N., & Heston, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458-464. 20.Shah, D., Isah, H., & Zulkernine, F. (2018). Predicting the effects of news sentiments on the stock market. In 2018 IEEE International Conference on Big Data (Big Data), pp. 4705-4708, IEEE. 21.Simoes, C., Neves, R., & Horta, N. (2017). Using sentiment from twitter optimized by genetic algorithms to predict the stock market. In 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1303-1310, IEEE. 22.Song, C., Wang, X. K., Cheng, P. F., Wang, J. Q., & Li, L. (2020). SACPC: A framework based on probabilistic linguistic terms for short text sentiment analysis. Knowledge-Based Systems, 194, 105572. 23.Sprenger, T. O., Sandner, P. G., Tumasjan, A., & Welpe, I. M. (2014). News or noise? Using Twitter to identify and understand company‐specific news flow. Journal of Business Finance & Accounting, 41(7-8), 791-830. 24.Tetlock, P. C. (2013). Giving content to investor sentiment: The role of media in the stock market. The Journal of finance, 62(3), 1139-1168. 25.Wu, C., Wu, F., Wu, S., Yuan, Z., Liu, J., & Huang, Y. (2019). Semi-supervised dimensional sentiment analysis with variational autoencoder. Knowledge-Based Systems, 165, 30-39. 26.Yu, L. C., Wu, J. L., Chang, P. C., & Chu, H. S. (2013). Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news. Knowledge-Based Systems, 41, 89-97.
|