跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張嘉錡
研究生(外文):CHANG-CHIA-CHI
論文名稱:燃油溫度差異對點火式內燃機之動力暨廢氣之分析
論文名稱(外文):The analysis of power performance and emission of spark ignition engine for different fuel temperatures
指導教授:賴榮哲賴榮哲引用關係薛明憲
指導教授(外文):Ing.Rong-Jer LaiMing-Hsien Hsueh
口試委員:薛堯文賴榮哲薛明憲謝宗翰
口試委員(外文):YAO-WEN HSUEHIng.Rong-Jer LaiMing-Hsien HsuehTSUNG-HAN HSIEH
口試日期:2023-06-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:71
中文關鍵詞:熱電晶片引擎性能廢氣排放燃油溫度
外文關鍵詞:thermoelectric chipsengine performanceexhaust emissionsfuel temperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要使用燃油溫度控制系統裝設於火花式內燃機引擎,探討燃油溫度
對輸出動力性能與廢氣排放之影響,其中利用熱電晶片電能轉換能量之方法,透過
鋁製油冷頭使針對燃油進行能量交換,形成一個燃油溫控循環,用以提高燃油溫度
提早形成燃料霧化,輔助燃燒完全。本實驗將結果與使用常溫下燃油之引擎系統進
行比較,探討燃油溫度差異對內燃機引擎動力性能與廢氣排放之影響。
由本文結果可知,添加本研究裝置對本實驗之影響為:
1. 燃油溫度增加,可以提升引擎的馬力,但當引擎轉速提高時,則影響程度
減少。
2. 燃油溫度增加,HC和CO排放量下降,且在A/F=13(經濟空燃比)影響最為明
顯,然而當引擎轉速的提高,HC的排放影響程度會減少。
3. 燃油溫度增加,則於高空燃比情況下,會降低NOx排放量,但於低空燃比
情況下,則NOx排放量增加。

The present study focuses on the installation of a fuel temperature control system in
a spark-ignition internal combustion engine to investigate the influence of fuel
temperature on output power performance and exhaust emissions. The method employed
involves utilizing thermoelectric chips to convert electrical energy into thermal energy,
facilitating energy exchange in the fuel through an aluminum oil cooler head. This creates
a fuel temperature control cycle aimed at promoting early fuel atomization for improved
combustion efficiency. A comparison is made between the results obtained using the
proposed system and a conventional fuel system operating at ambient temperature to
explore the effects of fuel temperature variation on the power performance and exhaust
emissions of the internal combustion engine
The findings of this study indicate the following impacts of implementing the
proposed device:
1. Increasing fuel temperature can enhance engine horsepower, but the degree of
Impact decreases as engine speed increases.
2. Increasing fuel temperature reduces HC and CO emissions, with the most
significant effect observed at an A/F ratio of 13 (stoichiometric ratio). However,
the impact on HC emissions decreases with increasing engine speed.
3. Increasing fuel temperature decreases NOx emissions under high air-fuel ratio
conditions, but increases NOx emissions under low air-fuel ratio conditions.
目錄
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究背景 2
1.2.1 液化石油氣(Liquefied Petroleum Gas,LPG)相關文獻探討 2
1.2.2 汽油內燃機相關文獻探討 3
1.2.3 柴油內燃機相關文獻探討 4
1.3 研究方法 6
1.4 研究內容架構 8
1.5 研究限制 10
第二章 基本原理 11
2.1 熱電晶片(Thermoelectric Chips,TEC) 11
2.2 內燃機原理 13
2.2.1 奧圖循環 13
2.2.2 馬力分析 14
2.2.3 扭力分析 15
2.2.4 廢氣分析 15
2.2.4.1 氮氧化物(NOx) 15
2.2.4.2 碳氫化合物(HC) 16
2.2.4.3 一氧化碳(CO) 16
2.2.4.4 機車排放標準規範 17
2.3 空氣與燃料混合原理 19
2.3.1 空燃比分析 19
2.3.2 空燃比對內燃機性能與燃料消耗分析 19
2.3.3 空燃比對內燃機排放廢氣分析 21
第三章 研究內容與方法 22
3.1 實驗架構介紹 22
3.2 燃油溫度監控系統 23
3.2.1 燃油溫度控制裝置 23
3.2.2 燃油溫度量測裝置 26
3.2.3 燃油溫度控制條件設定 28
3.3 實驗設備 29
3.3.1 實驗機車 29
3.3.2 aRacer RC Super2全取代EFI噴射電腦 32
3.3.3 Dynostar D50 ECB底盤動力計 34
3.3.4 EF-306EN廢氣分析儀 36
3.4 實驗方法 38
第四章 實驗結果與分析 40
4.1 動力性能分析 40
4.1.1馬力結果分析 40
4.1.2扭力結果分析 45
4.2 廢氣排放分析 49
4.2.1 HC排放 49
4.2.2 CO排放 53
4.2.3 CO2排放 57
4.2.4 NOx排放 61
第五章 結論與建議 65
5.1 結論 65
5.2 建議 66
第六章 參考文獻 67


[1]J. R. Serrano, R. Novella, and P. Piqueras, "Why the Development of Internal Combustion Engines Is Still Necessary to Fight against Global Climate Change from the Perspective of Transportation," Applied Sciences, vol. 9, no. 21, 2019, doi: 10.3390/app9214597.
[2]T. Li, X. Dong, D. L. S. Hung, X. Li, and M. Xu, "Analysis of evaporation characteristics and heat transfer for flash-boiling sprays," International Journal of Heat and Mass Transfer, vol. 127, pp. 244-254, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.07.023.
[3]M. A. Ceviz, A. Kaleli, and E. Güner, "Controlling LPG temperature for SI engine applications," Applied Thermal Engineering, vol. 82, pp. 298-305, 2015, doi: 10.1016/j.applthermaleng.2015.02.059.
[4]M. A. Ceiz, İ. V. Öner, A. R. Kaleli, A. Mavi, and A. K. Sen, "Fuel temperature control in LPG fuelled SI engines," in 2012 IEEE International Conference on Electro/Information Technology, 2012: IEEE, pp. 1-4.
[5]K. N. Duc and V. N. Duy, "Study on performance enhancement and emission reduction of used fuel-injected motorcycles using bi-fuel gasoline-LPG," Energy for Sustainable Development, vol. 43, pp. 60-67, 2018, doi: 10.1016/j.esd.2017.12.005.
[6]M. K. Mohammed, H. H. Balla, Z. M. H. Al-Dulaimi, and S. A.-Z. Mudhaffar, "The Effect of Using LPG in a SI engine instead of using Gasoline fuel," in IOP Conference Series: Materials Science and Engineering, 2020, vol. 928, no. 2: IOP Publishing, p. 022089.
[7]N. Ganesan et al., "Experimental based comparative exergy analysis of a spark‐ignition Honda GX270 Genset engine fueled with LPG and syngas," Energy Science & Engineering, vol. 10, no. 7, pp. 2191-2204, 2022, doi: 10.1002/ese3.1125.
[8]K. Kurtyka and J. Pielecha, "Cold start emissions from a gasoline engine in RDE tests at different ambient temperatures," Combustion Engines, vol. 181, no. 2, pp. 24-30, 2020, doi: 10.19206/ce-2020-204.
[9]A. Kuranc, "A continuous measurement of CO, CO2, HC and NOX at the work of a combustion engine fed with petrol in unstable thermal conditions," Teka Komisji Motoryzacji i Energetyki Rolnictwa, vol. 5, pp. 107-115, 2005.

[10]F. Schulz and F. Beyrau, "The influence of flash-boiling on spray-targeting and fuel film formation," Fuel, vol. 208, pp. 587-594, 2017, doi: 10.1016/j.fuel.2017.07.047.
[11]H. Guo et al., "Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector," Fuel, vol. 199, pp. 125-134, 2017, doi: 10.1016/j.fuel.2017.02.071.
[12]P. G. Aleiferis, J. Serras-Pereira, A. Augoye, T. J. Davies, R. F. Cracknell, and D. Richardson, "Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines," International Journal of Heat and Mass Transfer, vol. 53, no. 21-22, pp. 4588-4606, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.06.033.
[13]B. Deng et al., "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, vol. 169, pp. 1202-1213, 2019, doi: 10.1016/j.energy.2018.12.113.
[14]Z. Ma, P. Xu, and X. Wang, "Analysis of Fuel Evaporation for PFI Gasoline Engine at High Engine Body Temperature," UPB Scientific Bulletin, Series D: Mechanical Engineering, vol. 79, no. 1, pp. 107-118, 2017.
[15]B. Du, L. Zhang, Y. Geng, Y. Zhang, H. Xu, and G. Xiang, "Testing and evaluation of cold-start emissions in a real driving emissions test," Transportation Research Part D: Transport and Environment, vol. 86, 2020, doi: 10.1016/j.trd.2020.102447.
[16]J. Hwang, Y. Park, C. Bae, J. Lee, and S. Pyo, "Fuel temperature influence on spray and combustion characteristics in a constant volume combustion chamber (CVCC) under simulated engine operating conditions," Fuel, vol. 160, pp. 424-433, 2015, doi: 10.1016/j.fuel.2015.08.004.
[17]H. Chen, Q. Guo, X.-y. Zhao, M.-l. Xu, and Y. Ma, "Influence of fuel temperature on combustion and emission of biodiesel," Journal of the Energy Institute, vol. 89, no. 2, pp. 231-239, 2016, doi: 10.1016/j.joei.2015.01.024.
[18]A. Jain, A. P. Singh, and A. K. Agarwal, "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, vol. 122, pp. 249-264, 2017, doi: 10.1016/j.energy.2017.01.050.
[19]S. Ge et al., "Performance, combustion and emission characteristics of the CI engine fueled with Botryococcus braunii microalgae with addition of TiO2 nanoparticle," Fuel, vol. 317, 2022, doi: 10.1016/j.fuel.2021.121898.
[20]A. A. Al-Kheraif, A. Syed, A. M. Elgorban, D. D. Divakar, R. Shanmuganathan, and K. Brindhadevi, "Experimental assessment of performance, combustion and emission characteristics of diesel engine fuelled by combined non-edible blends with nanoparticles," Fuel, vol. 295, 2021, doi: 10.1016/j.fuel.2021.120590.
[21]X. Zhang, N. T. Lan Chi, C. Xia, A. S. Khalifa, and K. Brindhadevi, "Role of soluble nano-catalyst and blends for improved combustion performance and reduced greenhouse gas emissions in internal combustion engines," Fuel, vol. 312, 2022, doi: 10.1016/j.fuel.2021.122826.
[22]S. Ashfaque Ahmed et al., "Investigation of ternary blends of animal fat biodiesel-diethyl ether-diesel fuel on CMFIS-CI engine characteristics," Fuel, vol. 332, 2023, doi: 10.1016/j.fuel.2022.126200.
[23]W. A. Salah and M. Abuhelwa, "Review of thermoelectric cooling devices recent applications," Journal of Engineering Science and Technology, vol. 15, no. 1, pp. 455-476, 2020.
[24]W.-W. Wang, H.-F. Yang, H.-L. Zhang, T.-Y. Xu, F.-Y. Zhao, and S.-J. Wu, "Pulsating heat pipe and thermo-electric generator jointly applied in renewable energy exploitation: Analytical and experimental investigations," Energy, vol. 263, p. 125573, 2023.
[25]S. B. Riffat and X. Ma, "Thermoelectrics: a review of present and potential applications," Applied thermal engineering, vol. 23, no. 8, pp. 913-935, 2003.
[26]A. C. Alkidas, "Combustion advancements in gasoline engines," Energy Conversion and Management, vol. 48, no. 11, pp. 2751-2761, 2007, doi: 10.1016/j.enconman.2007.07.027.
[27]Y.-z. An, S.-p. Teng, Y.-q. Pei, J. Qin, X. Li, and H. Zhao, "An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline," Fuel, vol. 164, pp. 160-171, 2016, doi: 10.1016/j.fuel.2015.10.007.
[28]T. Sinigaglia, M. Eduardo Santos Martins, and J. Cezar Mairesse Siluk, "Technological evolution of internal combustion engine vehicle: A patent data analysis," Applied Energy, vol. 306, 2022, doi: 10.1016/j.apenergy.2021.118003.
[29]C. Wu, "Thermodynamic Cycles: Computer-aided design and optimization," CRC Press, 2003.
[30]M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, "Fundamentals of engineering thermodynamics," John Wiley & Sons, 2010.
[31]R. D. Reitz et al., "IJER editorial: The future of the internal combustion engine," International Journal of Engine Research, vol. 21, no. 1, pp. 3-10, 2019, doi: 10.1177/1468087419877990.
[32]H. Shinjoh, "Rare earth metals for automotive exhaust catalysts," Journal of Alloys and Compounds, vol. 408-412, pp. 1061-1064, 2006, doi: 10.1016/j.jallcom.2004.12.151.
[33]A. Fayyazbakhsh et al., "Engine emissions with air pollutants and greenhouse gases and their control technologies," Journal of Cleaner Production, vol. 376, 2022, doi: 10.1016/j.jclepro.2022.134260.
[34]N. Takahashi et al., "The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst," Catalysis Today, vol. 27, no. 1-2, pp. 63-69, 1996.
[35]Y. Ogen, "Assessing nitrogen dioxide (NO(2)) levels as a contributing factor to coronavirus (COVID-19) fatality," Sci Total Environ, vol. 726, p. 138605, Jul 15 2020, doi: 10.1016/j.scitotenv.2020.138605.
[36]Z. Zhao, Y. Huang, X. Yu, Z. Guo, M. Li, and T. Wang, "Effect of brown gas (HHO) addition on combustion and emission in gasoline engine with exhaust gas recirculation (EGR) and gasoline direct injection," Journal of Cleaner Production, vol. 360, 2022, doi: 10.1016/j.jclepro.2022.132078.
[37]P. Atarod et al., "Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ‎emulsion fuel," J Hazard Mater, vol. 407, p. 124369, Apr 5 2021, doi: 10.1016/j.jhazmat.2020.124369.
[38]行政院環境保護署, "預告「移動污染源空氣污染物排放標準」修正草案," 政府線上即時參與平台, Available: https://join.gov.tw/policies/detail/b73ec892-56d0-4260-a1af-d0b3c5fd5427, Accessed on: 2023年.
[39]S. A. F. Al-Arkawazi, "Analyzing and predicting the relation between air–fuel ratio (AFR), lambda (λ) and the exhaust emissions percentages and values of gasoline-fueled vehicles using versatile and portable emissions measurement system tool," SN Applied Sciences, vol. 1, no. 11, 2019, doi: 10.1007/s42452-019-1392-5.
[40]J. Lauber, T. M. Guerra, and M. Dambrine, "Air-fuel ratio control in a gasoline engine," International Journal of Systems Science, vol. 42, no. 2, pp. 277-286, 2010, doi: 10.1080/00207720902957236.


[41]S. Woo, J. Lee, and K. Lee, "Experimental study on the performance of a liquefied petroleum gas engine according to the air fuel ratio," Fuel, vol. 303, 2021, doi: 10.1016/j.fuel.2021.121330.
[42]J. S. Souder and J. K. Hedrick, "Adaptive sliding mode control of air–fuel ratio in internal combustion engines," International Journal of Robust and Nonlinear Control, vol. 14, no. 6, pp. 525-541, 2004, doi: 10.1002/rnc.901.
[43]O. A. Odunlami, O. K. Oderinde, F. A. Akeredolu, J. A. Sonibare, O. R. Obanla, and M. E. Ojewumi, "The effect of air-fuel ratio on tailpipe exhaust emission of motorcycles," Fuel Communications, vol. 11, 2022, doi: 10.1016/j.jfueco.2021.100040.
[44]A. Khoshhal, M. Rahimi, and A. A. Alsairafi, "CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace," International Communications in Heat and Mass Transfer, vol. 38, no. 10, pp. 1421-1427, 2011, doi: 10.1016/j.icheatmasstransfer.2011.08.008.
[45]光陽機車公司,網址 https://www.kymco.com.tw/manuals。
[46]台灣台中 Dynostar 公司,網址 https://dynostar.com.tw/company/。
[47]aRacer SpeedTek Inc.,網址 https://www.aracer-speedtek.com/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊