[1]徐如欣, 何瑀琪, 國家衛生研究院, “硫化氫” 國家環境毒物研究中心第2.0版, 2019.
[2]Safe Work Australia, “Hydrogen Sulfide” Government of Newfoundland and Labrador, 2019.
[3]危害性化學預防規章, “勞工作業場所容許暴露標準” 中華民國工業安全衛生協會, 勞職授字第10302007931號令修正公布名稱及全文 11 條, 2014.
[4]J. S. Rana, S. Das and S. Jit, "PTB7 Decorated ZnO-Nanorod-Based Room-Temperature Ammonia Gas Sensor," in IEEE Sensors Journal, vol. 22, no. 23, pp. 22398-22403, 1 Dec.1, 2022.
[5]S. Lu, Y. Zhang, J. Liu, H. Li, Z. Hu, X. Luo, N. Gao, B. Zhang, J. Jiang, A. Zhong, J. Luo, H. Liu, Sensitive H2 gas sensors based on SnO2 nanowires, Sensors & Actuators, B: Chemical, Vol. 345, 2021.
[6]W. Qin, Z. Yuan, H. Gao, R. Zhang, F. Meng, Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle, Sensors & Actuators, B: Chemical, Vol. 341, 2021.
[7]D. Hwang, S. Kim, J. Lee, I. Hwang, I. Doo, Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl–NiO composite nanofibers, Journal of Materials Chemistry, vol. 2, pp. 1959-19651, 2011.
[8]A.S. Chizhov, M.N. Rumyantseva, K.A. Drozdov, I.V. Krylov, M. Batuk, J. Hadermann, D.G. Filatova, N.O. Khmelevsky, V.F. Kozlovsky, L.N. Maltseva, A.M. Gaskov, Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals, Sensors & Actuators, B: Chemical, Vol. 329, 2021.
[9]X. F. Chu, Z. Q. Gan, L. S. Bai, Y. P. Dong, M. N. Rumyantseva, The acetic acid vapor sensing properties of BaSnO3 microtubes prepared by electrospinning method, Materials Science and Engineering B, Vol. 259, 2020.
[10]A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, Y. Dong, S. Liang, A. K. Chakraborty, Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning, Journal of Materials Research, vol. 34, pp. 2067–2077, 2019.
[11]R.S. Shinde, S.D. Khairnar, M.R. Patil, V.A. Adole, P. B. Koli, V. V. Deshmane, D. K. Halwar, R. A. Shinde, T. B. Pawar, B. S. Jagdale, A. V. Patil. Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and Gas Sensor for Environmental Remediation, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 32, pp. 1045–1066, 2022.
[12]L. Zhou, C. Y. Li, X. Liu, Y. S. Zhu, Y. P. Wu, T. V. Ree, 7 - Metal oxides in supercapacitors, Editor(s): Y. P. Wu, In Metal Oxides, Metal Oxides in Energy Technologies, Elsevier, pp. 169-203, 2018.
[13]J.E. Cañas-Carrell, S. Li, A.M. Parra, B. Shrestha, “10 - Metal oxide nanomaterials: health and environmental effects”, Editor(s): James Njuguna, Krzysztof Pielichowski, Huijun Zhu, Health and Environmental Safety of Nanomaterials, Woodhead Publ, pp. 200-221, 2014.
[14]B. Saruhan, R. L. Fomekong, S. Nahirniak, Review: influences of semiconductor metal oxide properties on gas sensing characteristics, Frontiers in Sensors, Vol. 2, 2021.
[15]I.M. Tiginyanu, O. Lupan, V.V. Ursaki, L. Chow, M. Enachi, “Nanostructures of Metal Oxides”, UCF, Vol. 1-6, 2011.
[16]L. Zaraska, K. Gawlak, M. Gurgul, K. Mika, M. Zych, G. D. Sulka, “Chapter eleven - Nanostructured semiconductor oxides formed by anodic oxidation of metallic Sn”, Editor(s): G. D. Sulka, In Micro and Nano Technologies, Nanostructured Anodic Metal Oxides, Elsevier, pp. 349-384, 2020.
[17]W. Zhou, Y. Liu, Y. Yang, P. Wu. "Band gap engineering of SnO2 by epitaxial strain: experimental and theoretical investigations." J. Phys. Chem. C, pp. 6448-6453, 2014.
[18]Y. Y. Li, R. V. Wu, M. Yang, H. Yu, Y. Yang, X. T. Dong, Preparation of aloe-like ordered mesoporous SnO2 with excellent gas sensing property to H2S, Journal of Alloys and Compounds, Vol. 906, 2022.
[19]O. de Leuze Y. Danlee, X. Tang, J. Mahy, T. Walewyns, J. -P. Raskin, S. Herman, L. A. Francis, "Sub-ppm detection of H2S with CuO-loaded SnO2 hollow nanospheres deposited on interdigitated electrodes," 2022 ISOEN, Aveiro, Portugal, pp. 1-3, 2022.
[20]A. Mobasheri, S. Parhoodeh, & G. Shams, “Cd-doped SnO2-reduced Graphene Oxide Composite Nanofibrous Mats as CO Gas Sensors”, Fibers and Polymers, pp. 784–790, 2022.
[21]A. Navrotsky, D.J. Weidner, “Perovskite: A Structure of Great Interest to Geophysics and Materials Science”, AGU, Washington DC, 1989.
[22]P.C. Reshmi Varma, Chapter 7 - Low-Dimensional Perovskites, Editor(s): Sabu Thomas, Aparna Thankappan, Perovskite Photovoltaics, Academic Press, pp. 197-229, 2018.
[23]A. Marikutsa, M. Rumyantseva, A. Baranchikov, A. Gaskov, Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2, Materials, 2015.
[24]K. S. Belthle, U. N. Gries, M. P. Mueller, D. Kemp, A. Prakash, M. A. Rose, J. M. Börgers, B. Jalan, F. Gunkel, R. A. De Souza, Quantitative Determination of Native Point-Defect Concentrations at the ppm Level in Un-Doped BaSnO3 Thin Films, Advanced Functional Materials, Vol. 32, 2022.
[25]B. Ostrick, M. Fleischer, U. Lampe, H. Meixner, Preparation of stoichiometric barium stannate thin films: Hall measurements and gas sensitivities, Sensors & Actuators, B: Chemical, Vol. 44, pp. 601-606, 1997.
[26]H. J. Kim, U. Kim, Kim, T. H. Kim, H. S. Mun, B. G Jeon, K. T. Hong, W. J. Lee, C. J. Ju, K. H. Kim, High Mobility in a Stable Transparent Perovskite Oxide, Applied Physics Express, Vol. 5, 6, 2012.
[27]D. O. Scanlon, Defect engineering of BaSnO3 for high-performance transparent conducting oxide applications, Physical Review B, Vol. 87, 16, pp. 161201, 2013.
[28]J. Cerdà, J. Arbiol, G. Dezanneau, R. Dı́az, J.R. Morante, Perovskite-type BaSnO3 powders for high temperature gas sensor applications, Sensors & Actuators, B: Chemical, Vol. 84, 1, pp. 21-25, 2002.
[29]H. Mizoguchi, P. M. Woodward, C. H. Park, D. A. Keszler,Strong near-infrared luminescence in BaSnO3." Journal of the American Chemical Society, Vol. 126, 31, pp. 9796-9800, 2004.
[30]J. G. Wu, S. Zou, B. Wang, C. H. Feng, T. Yoshinobu, Enhanced acetone sensing properties of W-doped ZnFe2O4 electrospinning nanofibers, Journal of Alloys and Compounds, Vol. 938, 2023.
[31]J. Wang, Z. Z. Wang, J. F. Ni, L. Li, Electrospinning for flexible sodium-ion batteries, Energy Storage Materials, Vol. 45, pp. 704-719. 2022,
[32]V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, Preparation of polycrystalline tungsten nanofibers by needleless electrospinning, Journal of Alloys and Compounds, Vol. 900, 2022.
[33]B. Robb, B. Lennox, 3 - The electrospinning process, conditions and control, Editor(s): Lucy A. Bosworth, Sandra Downes, In Woodhead Publishing Series in Biomaterials, Electrospinning for Tissue Regeneration, Woodhead Publishing, pp. 51-66, 2011.
[34]P. Moutsatsou, K. Coopman, M. B. Smith, S. Georgiadou, Conductive PANI fibers and determining factors for the electrospinning window, Polymer, Vol. 77, pp. 143-151, 2015.
[35]C. Pollock, DVM, Dipl ABVP (Avian), The Canary in the Coal Mine, Journal of Avian Medicine and Surgery, Vol. 30, pp. 386–391, 2016.
[36]Z. Yunusa, M. N. Hamidon, A. Kaiser, Z. Awang, Gas Sensors: A Review, Sensors & Transducers, Vol. 168, 4, pp. 61-75, 2014.
[37]N.A. Isaac, I. Pikaar, and G. Biskos, Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. MCA, No. 196, 2022.
[38]S.D. Kolev, M. Ádám, I. Bársony, A. van den Berg, C. Cobianu, S. Kulinyi, Mathematical modelling of a porous silicon-based pellistor-type catalytic flammable gas sensor, Microelectronic Engineering, Vol. 29, 4–5, pp. 235-2391, 1998.
[39]E. Gorbova, F. Tzorbatzoglou, C. Molochas, D. Chloros, A. Demin, P. Tsiakaras, Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection, Catalysts, Vol. 12, 2022.
[40]J. Li, H. Yan, H. T. Dang, Fanli Meng, Structure design and application of hollow core microstructured optical fiber gas sensor: A review, Optics & Laser Technology, Vol. 135, 2021.
[41]R. Shaik, R. K. Kampara, A. Kumar, C. S. Sharma, M. Kumar, Metal oxide nanofibers based chemiresistive H2S gas sensors, Coordination Chemistry Reviews, Vol. 471, 2022.
[42]A. S. Bahman, F. Iannuzzo, 8 - Computer-aided engineering simulations, Editor(s): Katsuaki Suganuma, In Woodhead Publishing Series in Electronic and Optical Materials, Wide Bandgap Power Semiconductor Packaging, Woodhead Publishing, pp. 199-223, 2018.
[43]G. İrsel, Strength-based design of a fertilizer spreader chassis using computer aided engineering and experimental validation. Proceedings of the Institution of Mechanical Engineers, Proceedings of the Institution of Mechanical Engineers, Part C, Vol. 235, 12, pp. 2285-2308, 2021.
[44]H. C. Lim, H. N. Jeon, S. C. Lim, Y. Jang, T. H. Kim, H. Y. Cho, J. G. Pan, K. T. No, Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein, Computational and Structural Biotechnology Journal, Vol. 20, pp. 788-798, 2022.
[45]J. D. Anderson, & J. Wendt, Computational fluid dynamics, New York: McGraw-Hill, Vol. 206, p. 332, 1995.
[46]H. Ettehadi, H. Alisadeghi, Accuracy of the new actuator surface-CFD approach for predicting the performance of oscillating turbines, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 12, 2023.
[47]D. M. Zhang, L. Han, Z. K. Huang, A numerical approach for fluid-particle-structure interactions problem with CFD-DEM-CSD coupling method, Computers and Geotechnics, Vol. 152, 2022.
[48]N. Hall, Glenn Research Center, “Navier-Strokes Equations 3-dimentional-unsteady”, National Aeronautics and Space Administration. https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html.
[49]D. W. Ball, Field Guide to Spectroscopy, SPIE Press, Bellingham, WA , 2006.
[50]B. García-Archilla, V. John, J. Novo, On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows, Computer Methods in Applied Mechanics and Engineering, Vol. 385, 2021.
[51]H. T. Cho, M. G. Kang, Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations, Journal of Computational Physics, Vol. 445, 2021.
[52]G. H. Yeoh, J. Y. Tu, Chapter 3 - Solution Methods for Multi-Phase Flows, Editor(s): Guan Heng Yeoh, Jiyuan Tu, Computational Techniques for Multiphase Flows, Butterworth-Heinemann, pp. 95-242, 2010.
[53]Z. M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials: I . Preparation and Defect Structure”, 1976 ECS, Journal of The Electrochemical Society, Vol. 123, 1976.
[54]A. R. Kamali, S. Y. Li, Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance, Applied Energy, Vol. 334, 2023.
[55]M. Borrego, J. E. Martín-Alfonso, M. C. Sánchez, C. Valencia, J. M. Franco, Electrospun lignin-PVP nanofibers and their ability for structuring oil, International Journal of Biological Macromolecules, Vol. 180, Pages 212-221, 2021.
[56]K. Nasouri, A. M. shoushtari, M. R. Mohaddes Mojtahedi, Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent, Advances in Polymer Science, Vol. 34, 3, 2015.
[57]S. Kumarage, I. Munaweera, N. Kottegoda, A comprehensive review on electrospun nanohybrid membranes for wastewater treatment, Beilstein Journal of Nanotechnology, Vol. 1, pp. 137-159, 2022.
[58]C. M. Ghimbeu, M. Lumbreras, M. Siadat, R. C. van Landschoot, Joop Schoonman, Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection, Sensors and Actuators B: Chemical, Vol. 133, pp. 694-698, 2008.
[59]詹慶安。 SnO2-ZnO與 SnO2-La2O3異質結構於氣體感測器應用研究。國立高雄應用科技大學機械工程系碩士論文,高雄市 2018。[60]周姣,田陸。Pd-SnO2納米複合材料製備及氫氣傳感器。王瑩,吳歡燕。北京路皓知識產權代理有限公司11002,2006。
[61]M. Z. Ongun, S. Oguzlar, S.A. Akalin,S. Yildirim. Characterization and optical gas sensing properties of BaSnO3 synthesized by novel technique: flame spray pyrolysis, Journal of Materials Science: Materials in Electronics, Vol. 32, pp. 15160–15170, 2021.
[62]G. Mishra, C. Minor, A. Tiwari, High throughput synthesis of BaSnO3 microcrystals by molten salt technique, Materials Chemistry and Physics, Vol. 295, 2023.
[63]A. I. Ayesh, S.A. Alghamdi, Belal Salah, S.H. Bennett, C. Crean, P.J. Sellin, High sensitivity H2S gas sensors using lead halide perovskite nanoparticles, Results in Physics, Vol. 35, 2022.
[64]A.I. Ayesh, A.A. Alyafei, R.S. Anjum, R. M. Mohamed, M. B. Abuharb, B. Salah, M. El-Muraikhi. Production of sensitive gas sensors using CuO/SnO2 nanoparticles. Applied Physics A, 2019.
[65]M. A. Haija, G. Basina, F. Banat, A. I. Ayesh, Adsorption and gas sensing properties of CuFe2O4 nanoparticles, Materials Science-Poland, 37, pp. 289-295, 2019.
[66]A. Kumar, A. K. Shringi, M. Kumar, “RF sputtered CuO anchored SnO2 for H2S gas sensor”, Sensors and Actuators B: Chemical, Vol. 370, 2022.
[67]P. Shankar, J. B. Balaguru Rayappan. "Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review." Science Letters Journal, Vol. 4, 2015.
[68]Y. M. Wang, X. C. Wang, B. Y. Qi, J. P. Cheng, X. Y. Wang, Y. Y. Shang, J. F. Jia. "Design of SnO2/ZnO@ ZIF‐8 Hydrophobic Nanofibers for Improved H2S Gas Sensing." ChemistrySelect, Vol. 6, pp. 5488-5495, 2021.
[69]D. Xue, J. Wang, Y. Wang, G. Sun, J. Cao, H. Bala, Z. Zhang, Enhanced Methane Sensing Properties of WO3 Nanosheets with Dominant Exposed (200) Facet via Loading of SnO2 Nanoparticles, Nanomaterials, Vol. 9, 2019.
[70]D. Wu, A. Akhtar. Ppb-Level Hydrogen Sulfide Gas Sensor Based on the Nanocomposite of MoS2 Octahedron/ZnO-Zn2SnO4 Nanoparticles, Molecules, Vol. 28, 2023.
[71]A. Marikutsa, A. A. Dobrovolskii, M. N. Rumyantseva, A. A. Mikhaylov, A. G. Medvedev, O. Lev, P. V. Prikhodchenko, Improved H2S sensitivity of nanosized BaSnO3 obtained by hydrogen peroxide assisted sol-gel processing, Journal of Alloys and Compounds, Vol. 944, 2023.
[72]Z. Lu, Q. Zhou, C. Wang, Z. Wei, L. Xu, Y. Gui, Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S. Frontiers in Chemistry, Vol. 6, 540, 2018.
[73]L. W. Mao, L.Y. Zhu, T. T. Wu, L. Xu, X.H. Jin, H. L. Lu, Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods, Applied Surface Science, Vol. 602, 2022.