跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昀駪
研究生(外文):LI, YUN-SHEN
論文名稱:SnO2/BaSnO3異質結合氣體感測器特性及應用
論文名稱(外文):Characteristics and Applications of SnO2/BaSnO3 Heterojunction Gas Sensor
指導教授:黃靖謙方得華方得華引用關係
指導教授(外文):HUANG, CHING-CHIENFANG, TE-HUA
口試委員:蕭育仁黃靖謙方得華
口試委員(外文):HSIAO, YU-JENHUANG, CHING-CHIENFANG, TE-HUA
口試日期:2023-07-18
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:122
中文關鍵詞:靜電紡絲計算流體力學鈣鈦礦複合材料H2S感測器
外文關鍵詞:electrospinningcomputational fluid dynamicsperovskitecomposite materialH2S gas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過靜電紡絲製備二氧化錫(SnO2)奈米纖維並與鈣鈦礦錫酸鋇(BaSnO3)進行複合,紡絲實驗中透過改變高分子含量與工作電壓探討材料特性,並使用計算流體力學(CFD)輔助驗證紡絲實驗結果,取得最佳纖維狀態並應用於氣體感測器。分析結果顯示,當紡絲溶液黏度隨著實驗次數增加下得到的纖維平均直徑會隨著黏度提升下增加,而電場分佈除了影響纖維的粗細外,也會影響纖維分佈於收集板上的範圍。當PVP含量在10 wt.%且電壓在13 kV時進行紡絲可得到直徑分佈較均勻的纖維,與模擬結果吻合。經過XRD與EDS檢測下得知SnO2經過550 ℃燒結過後可以產生結晶,並在工作溫度275 ℃時可對10 ppm的硫化氫(H2S)產生63.5 %之響應。本研究使用BaSnO3鈣鈦礦材料作為SnO2氣體感測器之複合材料並進行氣體感測測試,實驗結果表明SnO2/BaSnO3複合材料在相同工作溫度時與純SnO2纖維相比出現響應增強現象,經過連續性測試下得知SnO2/BaSnO3複合材料工作溫度在255 ℃、H2S濃度在10 ppm的時候SnO2/BaSnO3擁有最穩定的響應,響應值維持在76 %。
This study presents tin oxide (SnO2) nanofibers by electrospinning and composite with barium stannate perovskite (BaSnO3). The electrospinning experiments were conducted by changing the polymer content and working voltage to explore the material properties and using computational fluid dynamics (CFD) to validate the outcomes of spinning trials. The best fiber condition was obtained and applied to the gas sensor. The results showed that the average diameter of fibers increased when the viscosity of the spinning solution increased, and the electric field distribution affected not only the fibers' thickness but also the range of fiber distribution on the collection plate. The experimental results present the best fiber diameter distribution when PVP content is 10 wt.% and the working voltage is 13 kV. After XRD and EDS examination, it was found that SnO2 could be crystallized at 550 °C and could produce a 63.5 % response to 10 ppm of hydrogen sulfide (H2S) at an operating temperature of 275 °C. This study, BaSnO3 perovskite material was used as the composite material for SnO2 gas sensors, and gas sensing tests were conducted. The experimental results showed that the SnO2/BaSnO3 composite material showed high stability at 255 ℃ when detecting 10 ppm of H2S.
摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機與目的 5
第二章 基礎原理與文獻回顧 6
2.1. 金屬氧化物材料 6
2.2. 二氧化錫金屬氧化物材料 6
2.3. 鈣鈦礦材料 8
2.4.錫酸鋇鈣鈦礦結構 10
2.5. 靜電紡絲 12
2.5.1. 簡介及文獻回顧 12
2.5.2. 靜電紡絲種類 14
2.5.3. 影響因素 16
2.6. 氣體感測器 18
2.6.1. 簡介與文獻回顧 18
2.6.2. 半導體式氣體感測器 20
2.6.3. 響應數值計算方式 22
2.7. 電腦輔助工程 23
2.7.1. 簡介與文獻回顧 23
2.7.2. 計算流體力學 24
第三章 研究方法 25
3.1. 研究架構 25
3.2. 實驗藥品及設備 27
3.3. 紡絲模擬使用模組 28
3.4. 製程設備 29
3.4.1. 臥式奈米紡絲機 29
3.4.2. 磁力攪拌台 30
3.4.3. 精密烘箱與高溫爐 31
3.4.4. 精密天秤 32
3.5. 實驗分析儀器 33
3.5.1. 多功能環境場發掃描式電子顯微鏡 33
3.5.2. 高溫二維 X射線廣角繞射儀 (XRD) 34
3.5.3. 氣體感測設備 35
3.5.4. 鍍金機 36
3.6. 靜電紡絲分析流程 37
3.6.1. 研究與維度及分析模型 37
3.6.2. 物理與邊界條件 39
3.6.3. 網格定義 45
3.7. 氣體感測器指叉式電極製作 46
3.8. SnO2/BaSnO3複合薄膜製備 50
3.8.1. 紡絲溶液混和 50
3.8.2. 靜電紡絲 51
3.8.3. 複合薄膜 51
3.9. 氣體感測 52
第四章 結果與討論 53
4.1. 紡絲模擬結果 53
4.1.1. 不同PVP含量影響 53
4.1.2. 不同工作電壓 56
4.2. 紡絲實驗結果 58
4.2.1. 不同PVP含量紡絲實驗 58
4.2.2. 不同工作電壓紡絲實驗 61
4.3. 材料性質探討 64
4.3.1. SnO2金屬氧化物粉末XRD分析 64
4.3.2. SnO2纖維能量色散X光譜及素像分析 66
4.3.3. BaSnO3金屬氧化物粉末XRD分析 67
4.3.4. BaSnO3薄膜能量色散X光譜及素像分析 69
4.3.5. SnO2/BaSnO3纖維能量色散X光譜及素像分析 71
4.4. SnO2奈米纖維氣體選擇性測試結果 74
4.5. SnO2/BaSnO3複合材料氣體感測結果 76
4.5.1. 氣體選擇性 76
4.5.2. 工作溫度測試 78
4.5.3. 濃度測試 81
4.5.4. 連續性測試 84
4.6. 氣體感測器機制 85
4.7. 氣體感測器性質比較 88
第五章 結語 89
5.1. 結論 89
5.2. 未來展望 90
參考資料 91
個人簡歷 101


[1]徐如欣, 何瑀琪, 國家衛生研究院, “硫化氫” 國家環境毒物研究中心第2.0版, 2019.
[2]Safe Work Australia, “Hydrogen Sulfide” Government of Newfoundland and Labrador, 2019.
[3]危害性化學預防規章, “勞工作業場所容許暴露標準” 中華民國工業安全衛生協會, 勞職授字第10302007931號令修正公布名稱及全文 11 條, 2014.
[4]J. S. Rana, S. Das and S. Jit, "PTB7 Decorated ZnO-Nanorod-Based Room-Temperature Ammonia Gas Sensor," in IEEE Sensors Journal, vol. 22, no. 23, pp. 22398-22403, 1 Dec.1, 2022.
[5]S. Lu, Y. Zhang, J. Liu, H. Li, Z. Hu, X. Luo, N. Gao, B. Zhang, J. Jiang, A. Zhong, J. Luo, H. Liu, Sensitive H2 gas sensors based on SnO2 nanowires, Sensors & Actuators, B: Chemical, Vol. 345, 2021.
[6]W. Qin, Z. Yuan, H. Gao, R. Zhang, F. Meng, Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle, Sensors & Actuators, B: Chemical, Vol. 341, 2021.
[7]D. Hwang, S. Kim, J. Lee, I. Hwang, I. Doo, Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl–NiO composite nanofibers, Journal of Materials Chemistry, vol. 2, pp. 1959-19651, 2011.

[8]A.S. Chizhov, M.N. Rumyantseva, K.A. Drozdov, I.V. Krylov, M. Batuk, J. Hadermann, D.G. Filatova, N.O. Khmelevsky, V.F. Kozlovsky, L.N. Maltseva, A.M. Gaskov, Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals, Sensors & Actuators, B: Chemical, Vol. 329, 2021.
[9]X. F. Chu, Z. Q. Gan, L. S. Bai, Y. P. Dong, M. N. Rumyantseva, The acetic acid vapor sensing properties of BaSnO3 microtubes prepared by electrospinning method, Materials Science and Engineering B, Vol. 259, 2020.
[10]A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, Y. Dong, S. Liang, A. K. Chakraborty, Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning, Journal of Materials Research, vol. 34, pp. 2067–2077, 2019.
[11]R.S. Shinde, S.D. Khairnar, M.R. Patil, V.A. Adole, P. B. Koli, V. V. Deshmane, D. K. Halwar, R. A. Shinde, T. B. Pawar, B. S. Jagdale, A. V. Patil. Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and Gas Sensor for Environmental Remediation, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 32, pp. 1045–1066, 2022.
[12]L. Zhou, C. Y. Li, X. Liu, Y. S. Zhu, Y. P. Wu, T. V. Ree, 7 - Metal oxides in supercapacitors, Editor(s): Y. P. Wu, In Metal Oxides, Metal Oxides in Energy Technologies, Elsevier, pp. 169-203, 2018.

[13]J.E. Cañas-Carrell, S. Li, A.M. Parra, B. Shrestha, “10 - Metal oxide nanomaterials: health and environmental effects”, Editor(s): James Njuguna, Krzysztof Pielichowski, Huijun Zhu, Health and Environmental Safety of Nanomaterials, Woodhead Publ, pp. 200-221, 2014.
[14]B. Saruhan, R. L. Fomekong, S. Nahirniak, Review: influences of semiconductor metal oxide properties on gas sensing characteristics, Frontiers in Sensors, Vol. 2, 2021.
[15]I.M. Tiginyanu, O. Lupan, V.V. Ursaki, L. Chow, M. Enachi, “Nanostructures of Metal Oxides”, UCF, Vol. 1-6, 2011.
[16]L. Zaraska, K. Gawlak, M. Gurgul, K. Mika, M. Zych, G. D. Sulka, “Chapter eleven - Nanostructured semiconductor oxides formed by anodic oxidation of metallic Sn”, Editor(s): G. D. Sulka, In Micro and Nano Technologies, Nanostructured Anodic Metal Oxides, Elsevier, pp. 349-384, 2020.
[17]W. Zhou, Y. Liu, Y. Yang, P. Wu. "Band gap engineering of SnO2 by epitaxial strain: experimental and theoretical investigations." J. Phys. Chem. C, pp. 6448-6453, 2014.
[18]Y. Y. Li, R. V. Wu, M. Yang, H. Yu, Y. Yang, X. T. Dong, Preparation of aloe-like ordered mesoporous SnO2 with excellent gas sensing property to H2S, Journal of Alloys and Compounds, Vol. 906, 2022.
[19]O. de Leuze Y. Danlee, X. Tang, J. Mahy, T. Walewyns, J. -P. Raskin, S. Herman, L. A. Francis, "Sub-ppm detection of H2S with CuO-loaded SnO2 hollow nanospheres deposited on interdigitated electrodes," 2022 ISOEN, Aveiro, Portugal, pp. 1-3, 2022.

[20]A. Mobasheri, S. Parhoodeh, & G. Shams, “Cd-doped SnO2-reduced Graphene Oxide Composite Nanofibrous Mats as CO Gas Sensors”, Fibers and Polymers, pp. 784–790, 2022.
[21]A. Navrotsky, D.J. Weidner, “Perovskite: A Structure of Great Interest to Geophysics and Materials Science”, AGU, Washington DC, 1989.
[22]P.C. Reshmi Varma, Chapter 7 - Low-Dimensional Perovskites, Editor(s): Sabu Thomas, Aparna Thankappan, Perovskite Photovoltaics, Academic Press, pp. 197-229, 2018.
[23]A. Marikutsa, M. Rumyantseva, A. Baranchikov, A. Gaskov, Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2, Materials, 2015.
[24]K. S. Belthle, U. N. Gries, M. P. Mueller, D. Kemp, A. Prakash, M. A. Rose, J. M. Börgers, B. Jalan, F. Gunkel, R. A. De Souza, Quantitative Determination of Native Point-Defect Concentrations at the ppm Level in Un-Doped BaSnO3 Thin Films, Advanced Functional Materials, Vol. 32, 2022.
[25]B. Ostrick, M. Fleischer, U. Lampe, H. Meixner, Preparation of stoichiometric barium stannate thin films: Hall measurements and gas sensitivities, Sensors & Actuators, B: Chemical, Vol. 44, pp. 601-606, 1997.
[26]H. J. Kim, U. Kim, Kim, T. H. Kim, H. S. Mun, B. G Jeon, K. T. Hong, W. J. Lee, C. J. Ju, K. H. Kim, High Mobility in a Stable Transparent Perovskite Oxide, Applied Physics Express, Vol. 5, 6, 2012.
[27]D. O. Scanlon, Defect engineering of BaSnO3 for high-performance transparent conducting oxide applications, Physical Review B, Vol. 87, 16, pp. 161201, 2013.
[28]J. Cerdà, J. Arbiol, G. Dezanneau, R. Dı́az, J.R. Morante, Perovskite-type BaSnO3 powders for high temperature gas sensor applications, Sensors & Actuators, B: Chemical, Vol. 84, 1, pp. 21-25, 2002.
[29]H. Mizoguchi, P. M. Woodward, C. H. Park, D. A. Keszler,Strong near-infrared luminescence in BaSnO3." Journal of the American Chemical Society, Vol. 126, 31, pp. 9796-9800, 2004.
[30]J. G. Wu, S. Zou, B. Wang, C. H. Feng, T. Yoshinobu, Enhanced acetone sensing properties of W-doped ZnFe2O4 electrospinning nanofibers, Journal of Alloys and Compounds, Vol. 938, 2023.
[31]J. Wang, Z. Z. Wang, J. F. Ni, L. Li, Electrospinning for flexible sodium-ion batteries, Energy Storage Materials, Vol. 45, pp. 704-719. 2022,
[32]V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, Preparation of polycrystalline tungsten nanofibers by needleless electrospinning, Journal of Alloys and Compounds, Vol. 900, 2022.
[33]B. Robb, B. Lennox, 3 - The electrospinning process, conditions and control, Editor(s): Lucy A. Bosworth, Sandra Downes, In Woodhead Publishing Series in Biomaterials, Electrospinning for Tissue Regeneration, Woodhead Publishing, pp. 51-66, 2011.
[34]P. Moutsatsou, K. Coopman, M. B. Smith, S. Georgiadou, Conductive PANI fibers and determining factors for the electrospinning window, Polymer, Vol. 77, pp. 143-151, 2015.
[35]C. Pollock, DVM, Dipl ABVP (Avian), The Canary in the Coal Mine, Journal of Avian Medicine and Surgery, Vol. 30, pp. 386–391, 2016.
[36]Z. Yunusa, M. N. Hamidon, A. Kaiser, Z. Awang, Gas Sensors: A Review, Sensors & Transducers, Vol. 168, 4, pp. 61-75, 2014.
[37]N.A. Isaac, I. Pikaar, and G. Biskos, Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. MCA, No. 196, 2022.
[38]S.D. Kolev, M. Ádám, I. Bársony, A. van den Berg, C. Cobianu, S. Kulinyi, Mathematical modelling of a porous silicon-based pellistor-type catalytic flammable gas sensor, Microelectronic Engineering, Vol. 29, 4–5, pp. 235-2391, 1998.
[39]E. Gorbova, F. Tzorbatzoglou, C. Molochas, D. Chloros, A. Demin, P. Tsiakaras, Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection, Catalysts, Vol. 12, 2022.
[40]J. Li, H. Yan, H. T. Dang, Fanli Meng, Structure design and application of hollow core microstructured optical fiber gas sensor: A review, Optics & Laser Technology, Vol. 135, 2021.
[41]R. Shaik, R. K. Kampara, A. Kumar, C. S. Sharma, M. Kumar, Metal oxide nanofibers based chemiresistive H2S gas sensors, Coordination Chemistry Reviews, Vol. 471, 2022.
[42]A. S. Bahman, F. Iannuzzo, 8 - Computer-aided engineering simulations, Editor(s): Katsuaki Suganuma, In Woodhead Publishing Series in Electronic and Optical Materials, Wide Bandgap Power Semiconductor Packaging, Woodhead Publishing, pp. 199-223, 2018.

[43]G. İrsel, Strength-based design of a fertilizer spreader chassis using computer aided engineering and experimental validation. Proceedings of the Institution of Mechanical Engineers, Proceedings of the Institution of Mechanical Engineers, Part C, Vol. 235, 12, pp. 2285-2308, 2021.
[44]H. C. Lim, H. N. Jeon, S. C. Lim, Y. Jang, T. H. Kim, H. Y. Cho, J. G. Pan, K. T. No, Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein, Computational and Structural Biotechnology Journal, Vol. 20, pp. 788-798, 2022.
[45]J. D. Anderson, & J. Wendt, Computational fluid dynamics, New York: McGraw-Hill, Vol. 206, p. 332, 1995.
[46]H. Ettehadi, H. Alisadeghi, Accuracy of the new actuator surface-CFD approach for predicting the performance of oscillating turbines, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 12, 2023.
[47]D. M. Zhang, L. Han, Z. K. Huang, A numerical approach for fluid-particle-structure interactions problem with CFD-DEM-CSD coupling method, Computers and Geotechnics, Vol. 152, 2022.
[48]N. Hall, Glenn Research Center, “Navier-Strokes Equations 3-dimentional-unsteady”, National Aeronautics and Space Administration. https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html.
[49]D. W. Ball, Field Guide to Spectroscopy, SPIE Press, Bellingham, WA , 2006.
[50]B. García-Archilla, V. John, J. Novo, On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows, Computer Methods in Applied Mechanics and Engineering, Vol. 385, 2021.
[51]H. T. Cho, M. G. Kang, Fully implicit and accurate treatment of jump conditions for two-phase incompressible Navier–Stokes equations, Journal of Computational Physics, Vol. 445, 2021.
[52]G. H. Yeoh, J. Y. Tu, Chapter 3 - Solution Methods for Multi-Phase Flows, Editor(s): Guan Heng Yeoh, Jiyuan Tu, Computational Techniques for Multiphase Flows, Butterworth-Heinemann, pp. 95-242, 2010.
[53]Z. M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials: I . Preparation and Defect Structure”, 1976 ECS, Journal of The Electrochemical Society, Vol. 123, 1976.
[54]A. R. Kamali, S. Y. Li, Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance, Applied Energy, Vol. 334, 2023.
[55]M. Borrego, J. E. Martín-Alfonso, M. C. Sánchez, C. Valencia, J. M. Franco, Electrospun lignin-PVP nanofibers and their ability for structuring oil, International Journal of Biological Macromolecules, Vol. 180, Pages 212-221, 2021.
[56]K. Nasouri, A. M. shoushtari, M. R. Mohaddes Mojtahedi, Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent, Advances in Polymer Science, Vol. 34, 3, 2015.
[57]S. Kumarage, I. Munaweera, N. Kottegoda, A comprehensive review on electrospun nanohybrid membranes for wastewater treatment, Beilstein Journal of Nanotechnology, Vol. 1, pp. 137-159, 2022.

[58]C. M. Ghimbeu, M. Lumbreras, M. Siadat, R. C. van Landschoot, Joop Schoonman, Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection, Sensors and Actuators B: Chemical, Vol. 133, pp. 694-698, 2008.
[59]詹慶安。 SnO2-ZnO與 SnO2-La2O3異質結構於氣體感測器應用研究。國立高雄應用科技大學機械工程系碩士論文,高雄市 2018。
[60]周姣,田陸。Pd-SnO2納米複合材料製備及氫氣傳感器。王瑩,吳歡燕。北京路皓知識產權代理有限公司11002,2006。
[61]M. Z. Ongun, S. Oguzlar, S.A. Akalin,S. Yildirim. Characterization and optical gas sensing properties of BaSnO3 synthesized by novel technique: flame spray pyrolysis, Journal of Materials Science: Materials in Electronics, Vol. 32, pp. 15160–15170, 2021.
[62]G. Mishra, C. Minor, A. Tiwari, High throughput synthesis of BaSnO3 microcrystals by molten salt technique, Materials Chemistry and Physics, Vol. 295, 2023.
[63]A. I. Ayesh, S.A. Alghamdi, Belal Salah, S.H. Bennett, C. Crean, P.J. Sellin, High sensitivity H2S gas sensors using lead halide perovskite nanoparticles, Results in Physics, Vol. 35, 2022.
[64]A.I. Ayesh, A.A. Alyafei, R.S. Anjum, R. M. Mohamed, M. B. Abuharb, B. Salah, M. El-Muraikhi. Production of sensitive gas sensors using CuO/SnO2 nanoparticles. Applied Physics A, 2019.
[65]M. A. Haija, G. Basina, F. Banat, A. I. Ayesh, Adsorption and gas sensing properties of CuFe2O4 nanoparticles, Materials Science-Poland, 37, pp. 289-295, 2019.
[66]A. Kumar, A. K. Shringi, M. Kumar, “RF sputtered CuO anchored SnO2 for H2S gas sensor”, Sensors and Actuators B: Chemical, Vol. 370, 2022.
[67]P. Shankar, J. B. Balaguru Rayappan. "Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review." Science Letters Journal, Vol. 4, 2015.
[68]Y. M. Wang, X. C. Wang, B. Y. Qi, J. P. Cheng, X. Y. Wang, Y. Y. Shang, J. F. Jia. "Design of SnO2/ZnO@ ZIF‐8 Hydrophobic Nanofibers for Improved H2S Gas Sensing." ChemistrySelect, Vol. 6, pp. 5488-5495, 2021.
[69]D. Xue, J. Wang, Y. Wang, G. Sun, J. Cao, H. Bala, Z. Zhang, Enhanced Methane Sensing Properties of WO3 Nanosheets with Dominant Exposed (200) Facet via Loading of SnO2 Nanoparticles, Nanomaterials, Vol. 9, 2019.
[70]D. Wu, A. Akhtar. Ppb-Level Hydrogen Sulfide Gas Sensor Based on the Nanocomposite of MoS2 Octahedron/ZnO-Zn2SnO4 Nanoparticles, Molecules, Vol. 28, 2023.
[71]A. Marikutsa, A. A. Dobrovolskii, M. N. Rumyantseva, A. A. Mikhaylov, A. G. Medvedev, O. Lev, P. V. Prikhodchenko, Improved H2S sensitivity of nanosized BaSnO3 obtained by hydrogen peroxide assisted sol-gel processing, Journal of Alloys and Compounds, Vol. 944, 2023.
[72]Z. Lu, Q. Zhou, C. Wang, Z. Wei, L. Xu, Y. Gui, Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S. Frontiers in Chemistry, Vol. 6, 540, 2018.
[73]L. W. Mao, L.Y. Zhu, T. T. Wu, L. Xu, X.H. Jin, H. L. Lu, Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods, Applied Surface Science, Vol. 602, 2022.

電子全文 電子全文(網際網路公開日期:20280822)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊