|
[1]Rosti, Injection molding: complete guide to scientific molding, (2023). https://www.plasticcomponents.com/scientific-molding-comprehensive-guide (accessed June 13, 2023). [2]FimmTech, Scientific molding – the 6-step study, (2018). https://fimmtech.com/knowledgebase-2/scientific-molding-the-6-step-study/ (accessed June 22, 2023). [3]A. Kaplan, M. Haenlein, Siri, siri, in my hand: who’s the fairest in the land? on the interpretations, illustrations, and implications of artificial intelligence, Bus. Horiz. 62 (2019) 15–25. https://doi.org/10.1016/j.bushor.2018.08.004. [4]Y. Lockner, C. Hopmann, W. Zhao, Transfer learning with artificial neural networks between injection molding processes and different polymer materials, J. Manuf. Process. 73 (2022) 395–408. https://doi.org/10.1016/j.jmapro.2021.11.014. [5]A. Mourya, A. Nanda, K. Parashar, Sushant, R. Kumar, An explanatory study on defects in plastic molding parts caused by machine parameters in injection molding process, Mater. Today Proc. 78 (2023) 656–661. https://doi.org/10.1016/j.matpr.2022.12.070. [6]C.-J. Tzeng, Y.-K. Yang, Y.-H. Lin, C.-H. Tsai, A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites using neural network and response surface methodology, Int. J. Adv. Manuf. Technol. 63 (2012) 691–704. https://doi.org/10.1007/s00170-012-3933-6. [7]P. Zhao, Z. Dong, J. Zhang, Y. Zhang, M. Cao, Z. Zhu, H. Zhou, J. Fu, Optimization of injection-molding process parameters for weight control: converting optimization problem to classification problem, Adv. Polym. Technol. 2020 (2020) 1–9. https://doi.org/10.1155/2020/7654249. [8]S. Mukras, Experimental-based optimization of injection molding process parameters for short product cycle time, Adv. Polym. Technol. 2020 (2020) 1–15. https://doi.org/10.1155/2020/1309209. [9]T. Ginghtong, N. Nakpathomkun, C. Pechyen, Effect of injection parameters on mechanical and physical properties of super ultra-thin wall propylene packaging by Taguchi method, Results Phys. 9 (2018) 987–995. https://doi.org/10.1016/j.rinp.2018.04.001. [10]TPRMA, 德國工業4.0政府計畫推動趨勢與智慧製造亮點案例, (2017). https://www.tprma.org.tw/industry-news/203-德國工業4-0政府計畫推動趨勢與智慧製造亮點案例.html (accessed June 14, 2023). [11]J. Bilbao-Ubillos, V. Camino-Beldarrain, G. Intxaurburu-Clemente, E. Velasco-Balmaseda, Industry 4.0 and potential for reshoring: A typology of technology profiles of manufacturing firms, Comput. Ind. 148 (2023) 103904. https://doi.org/10.1016/j.compind.2023.103904. [12]行政院經濟建設委員會, 歐美「再工業化」策略及 對台灣產業政策意涵, (2013). https://ws.ndc.gov.tw/001/administrator/10/relfile/5636/27188/f8ec4bf5-71a6-467b-a8d4-faac2022e449.pdf (accessed June 27, 2023). [13]T. Ageyeva, S. Horváth, J.G. Kovács, In-mold sensors for injection molding: on the way to industry 4.0, Sensors. 19 (2019) 3551. https://doi.org/10.3390/s19163551. [14]Y. Li, J.C. Chen, W.M. Ali, Process optimization and in-mold sensing enabled dimensional prediction for high precision injection molding, Int. J. Interact. Des. Manuf. IJIDeM. 16 (2022) 997–1013. https://doi.org/10.1007/s12008-021-00800-1. [15]S.-C. Nian, Y.-C. Fang, M.-S. Huang, In-mold and machine sensing and feature extraction for optimized IC-tray manufacturing, Polymers. 11 (2019) 1348. https://doi.org/10.3390/polym11081348. [16]P. Zheng, H. wang, Z. Sang, R.Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, X. Xu, Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives, Front. Mech. Eng. 13 (2018) 137–150. https://doi.org/10.1007/s11465-018-0499-5. [17]J.-C. Fan-Jiang, C.-W. Su, G.-Y. Liou, S.-J. Hwang, H.-H. Lee, H.-S. Peng, H.-Y. Chu, Study of an online monitoring adaptive system for an injection molding process based on a nozzle pressure curve, Polymers. 13 (2021) 555. https://doi.org/10.3390/polym13040555. [18]I.R. Schiffers, G.P. Holzinger, G. Huster, Adaptive process control for stabilizing the production process in injection moulding machines, in: Proc. 10th Int. Fluid Power Conf., Dresden, Germany, 2016: pp. 341–352. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-200201 (accessed June 28, 2023). [19]Y.-S. Chen, K.-T. Wu, M.-H. Tsai, S.-J. Hwang, H.-H. Lee, H.-S. Peng, H.-Y. Chu, Adaptive process control of the changeover point for injection molding process, J. Low Freq. Noise Vib. Act. Control. 40 (2021) 383–394. https://doi.org/10.1177/1461348419875057. [20]S. Farahani, V. Khade, S. Basu, S. Pilla, A data-driven predictive maintenance framework for injection molding process, J. Manuf. Process. 80 (2022) 887–897. https://doi.org/10.1016/j.jmapro.2022.06.013. [21]S. Kumar, H.S. Park, C.M. Lee, Data-driven smart control of injection molding process, CIRP J. Manuf. Sci. Technol. 31 (2020) 439–449. https://doi.org/10.1016/j.cirpj.2020.07.006. [22]ENGEL, Compensate for fluctuations in plastic viscosity, (2023). https://www.engelglobal.com/en/us/digital-solutions/digital-solutions-injection-molding-manufacturing-process/optimize-plastic-viscosity (accessed June 27, 2023). [23]K.-C. Ke, M.-S. Huang, Quality classification of injection-molded components by using quality indices, grading, and machine learning, Polymers. 13 (2021) 353. https://doi.org/10.3390/polym13030353. [24]K.-C. Ke, M.-S. Huang, Quality prediction for injection molding by using a multilayer perceptron neural network, Polymers. 12 (2020) 1812. https://doi.org/10.3390/polym12081812. [25]陳銘德, ISO國際版公差分析之2─標準公差值解析, (2020). http://digorlon.com/home/post/1201 (accessed July 15, 2023). [26]SMART Molding, 射出成品精度與成型參數及模穴公差之關係, (2020). https://www.smartmolding.com/20-09c05/ (accessed July 15, 2023). [27]B.-W. Wang, M.-S. Huang, S.-C. Nian, 射出成型之虛實整合技術, 2021. https://hdl.handle.net/11296/5q3fta (accessed July 12, 2023).
|