跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡文洋
論文名稱:添加不同比例石墨烯粉體的 PDMS自加熱軟模具應用於微熱壓成型製 程之研究
論文名稱(外文):Study on micro-hot embossing process using self-heating PDMS soft mold with different concentrations of graphene powder
指導教授:許昭和許昭和引用關係
指導教授(外文):HSU, CHAO-HO
口試委員:許昭和張致遠陳惠俐
口試委員(外文):HSU, CHAO-HOCHANG, CHIH-YUANCHEN, HUI-LI
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:82
中文關鍵詞:微熱壓成型微透鏡陣列石墨烯聚二甲基矽氧烷
外文關鍵詞:Micro hot embossingmicro-lens arraygraphenePDMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
微熱壓成型是生產高分子微結構元件的主流技術之一,但傳統微熱壓成型所使用的製程設備與剛性模具,通常具備加熱製程耗時與模具製作成本高昂的缺點,因此才有聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)軟模具與石墨烯快速加熱的技術被發展出來。
而本研究則是為了改善PDMS軟模具的剛性與提升微結構熱壓之成型性,所以在PDMS材料中添加特定比例的石墨烯粉體而形成複合材料。除此之外,本研究還在PDMS軟模具中嵌入薄膜狀的石墨烯加熱器,只需控制適當的電壓就可使壓印用的軟模具達到內部自加熱的效果,相較於傳統熱壓依靠遠紅外線或熱壓板間接加熱模具的原理而言,有明顯的不同與創新性。
本研究成功開發出石墨烯PDMS複材之自加熱軟模具,並進行模具表面的硬度試驗、升溫特性量測,並使用聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA)基材進行實際的微結構熱壓成型實驗,以觀察不同比例石墨烯粉體對於PDMS軟模具與微結構熱壓成型性的影響。
實驗結果顯示,0.5%wt比例石墨烯粉體PDMS硬度值為54.89,與純PDMS相比提升了9.78%,在添加不同比例石墨烯粉體後,導熱效率皆得到提升,添加0.5-1.5%wt比例石墨烯粉體時,微結構成型高度得到明顯的提升,使用添加0.5%wt石墨烯粉體的PDMS自加熱軟模具進行熱壓成型時,輸入電壓30V,預熱時間5 mins,持壓時間5mins,壓印壓力1kg/cm²的情形下,微結構高度為47.42µm,其微結構轉印複製率可達79.03%。

Micro hot embossing molding is one of the mainstream technologies for producing polymer microstructure components. However, the process equipment and rigid molds usually have the disadvantages of time-consuming heating process and high mold manufacturing costs. Therefore, PDMS soft molds and graphene rapid heating technologies have been developed.
In this study, in order to improve the rigidity of the PDMS soft mold and enhance the formability of the microstructure hot embossing, a different concentrations of graphene powder had added to the PDMS material to form a composite material. In addition, this research also embedded a thin-film graphene heater in the PDMS soft mold, through control the appropriate voltage to make the soft mold achieve internal self-heating for microstructure imprinting. The hardness test of the mold surface and the measurement of the temperature rise characteristics are carried out. Finally, the microstructure hot embossing experiment using PMMA substrate to observe the influence of different concentrations of graphene powder on the PDMS soft mold and microstructure hot embossing formability.
The experimental results show that the PDMS hardness value of adding 0.5%wt graphene powder is 9.78% higher than the pure PDMS. The thermal conductivity got improved after adding different concentrations of graphene powder. After adding 0.5-1.5%wt graphene powder, the height of microstructures are significantly improved. Using 0.5%wt graphene powder PDMS self-heating soft mold for hot embossing microstructure and the transfer replication rate can reach 79.03%.

口試審定書 II
著作權歸屬協議書 III
ABSTRACT V
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.1.1微熱壓成型 2
1.1.2 石墨烯材料 3
1.2研究動機及目的 4
1.3論文架構 5
第二章 文獻回顧 6
2.1微結構熱壓成型 6
2.2 PDMS軟模具熱壓成型 12
2.3石墨烯加熱性能 18
2.4 石墨烯聚合物複合材料 22
2.5石墨烯超音波處理 29
文獻總結 33
第三章 實驗材料及設備 34
3.1實驗材料 34
3.1.1石墨烯粉體 34
3.1.2石墨烯導電油墨 35
3.1.3 聚二甲基矽氧烷 36
3.1.4聚醯亞胺薄膜及膠帶 37
3.1.5塗佈線棒 38
3.1.6導電銀漆 39
3.1.7 雙面導電銅箔膠帶 39
3.1.8不鏽鋼微結構陣列模具 40
3.1.9聚甲基丙烯酸甲酯 42
3.2實驗設備 43
3.2.1熱壓成型機 43
3.2.2 PID溫控加熱板 44
3.2.3直流電源供應器 45
3.2.4超音波清洗機 46
3.3量測設備 47
3.3.1數位尖頭測砧外徑分厘卡 47
3.3.2紅外線熱影像儀 48
3.3.3雷射共軛焦顯微鏡 49
3.3.4掃描式電子顯微鏡 50
3.3.5蕭氏硬度計 51
第四章 實驗流程及方法 52
4.1實驗流程 52
4.2熱壓成型PMMA母板 53
4.3石墨烯加熱器製作 54
4.4石墨烯PDMS複材自加熱軟模具製作 55
4.5蕭氏硬度試驗 56
4.6軟模具升溫特性量測 57
4.7熱壓成型單一參數實驗 58
第五章 實驗結果與討論 59
5.1蕭氏硬度試驗結果 59
5.2軟模具升溫特性量測結果 61
5.3熱壓成型單一參數實驗結果 66
5.3.1溫度參數實驗結果 66
5.3.2持壓時間參數實驗結果 71
5.4微結構量測結果 75
第六章 結論與未來展望 76
6.1結論 76
6.2未來展望 77
參考文獻 78
簡歷 82


[1]M. Worgull, M. Heckele, New aspects of simulation in hot embossing. Microsystem Technologies. 10 (2004) 432-437. https://link.springer.com/content/pdf/10.1007/BF02637117.pdf
[2]林明俊,高分子薄板之微熱壓成型的模擬分析,98教專研成果報告,南亞技術學院,2009。http://web.nanya.edu.tw/tcof/tcrd/word/98%E6%95%99%E5%B0%88%E7%A0%94_%E6%88%90%E6%9E%9C%E5%A0%B1%E5%91%8A/%E6%95%99%E5%B0%88%E7%A0%94098P-042%E6%88%90%E6%9E%9C%E5%A0%B1%E5%91%8A(%E6%9E%97%E6%98%8E%E4%BF%8A).pdf
[3]洪偉修,世界上最薄的材料-石墨烯,臺灣師範大學,2009。https://grapheneresearch.files.wordpress.com/2014/05/e4b896e7958ce4b88ae69c80e89684e79a84e69d90e69699-e79fb3e5a2a8e783af.pdf
[4]Changgu Lee, Xiaoding Wei, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321, 385 (2008). https://doi.org/10.1126/science.1157996
[5]S. P. Apell, G. W. Hanson, C. Hägglund, High optical absorption in graphene. arXiv. (2012). https://doi.org/10.48550/arXiv.1201.3071
[6]M. S. Fuhrer, Electrons Can Travel Over 100 Times Faster In Graphene Than In Silicon, Nature Nanotechnology. (2008). http://www.sciencedaily.com/releases/2008/03/080324094514.htm
[7]Graphene flakes, Дагесян Саркис Арменакович, 2015. https://commons.wikimedia.org/wiki/File:Graphene_flakes.JPG
[8]Graphen, AlexanderAlUS, 2010. https://commons.wikimedia.org/wiki/File:Graphen.jpg
[9]Holger Becker. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators, 83 (2000) 130–135. https://doi.org/10.1016/S0924-4247(00)00296-X
[10]L.J. Heyderman, H. Schift, et al. Flow behaviour of thin polymer films used for hot embossing lithography. Microelectronic Engineering. 54 (2000) 229–245. https://doi.org/10.1016/S0167-9317(00)00414-7
[11]N.S. Ong, Y.H. Koh, Y.Q. Fu, Microlens array produced using hot embossing process, Microelectronic Engineering. 60 (2002) 365–379. https://doi.org/10.1016/S0167-9317(01)00695-5
[12]Xue Chuan SHAN, Ryutaro MAEDA, Yoichi MURAKOSHI, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 3859–3862. http://dx.doi.org/10.1143/JJAP.42.3859
[13]C.-Y. Chang, S.-Y. Yang, et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold, Infrared Physics & Technology. 48 (2006) 163–173. https://doi.org/10.1016/j.infrared.2005.10.002
[14]朱雲豪。發展氣體輔助熱壓成型技術 製作大面積光學薄膜元件。碩士論文。國立高雄應用科技大學。https://hdl.handle.net/11296/d54p6j
[15]Sean Moore, Juan Gomez, et al. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique, Microelectronic Engineering. 162 (2016) 57–62. https://doi.org/10.1016/j.mee.2016.05.009
[16]V.N. Goral, Y.-C. Hsieh, et al. Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds. Journal of Micromechanics and Microengineering. 21 (2011) 1. https://iopscience.iop.org/article/10.1088/0960-1317/21/1/017002
[17]Myeongsub Kim, Byeong-Ui Moon, Carlos H Hidrovo, Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. J. Micromech. Microeng. 23 (2013) 095024. https://iopscience.iop.org/article/10.1088/0960-1317/23/9/095024
[18]Bong-Kee Lee, Bom-yee Lee, Investigation of thermoplastic hot embossing process using soft polydimethylsiloxane (PDMS) micromold. Journal of Mechanical Science and Technology 29 (12) (2015) 5063~5067. http://dx.doi.org/10.1007/s12206-015-1102-1
[19]Jianwei Chen, Chenglin Gu, et al. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces. Optics Express Vol. 23, Issue 16 (2015) pp. 20977-20985. https://doi.org/10.1364/OE.23.020977
[20]Bom-yee Lee, Bong-Kee Lee, Surfactant-added hydrophilic polydimethylsiloxane (PDMS) as mold material for thermoplastic hot embossing process. AIP Advances 10 (2020) 095130. https://doi.org/10.1063/5.0022715
[21]Pengcheng Xie, Peng He, et al. Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers. Surface & Coatings Technology 258 (2014) 174–180. https://doi.org/10.1016/j.surfcoat.2014.09.034
[22]Gao Yang, Lihua Li, Wing Bun Lee, et al. Investigation of the heating behavior of carbide-bonded graphene coated silicon wafer used for hot embossing. Applied Surface Science 435 (2018) 130–140. https://doi.org/10.1016/j.apsusc.2017.11.050
[23]Cih Cheng, Kun-Cheng Ke, Sen-Yeu Yang, Application of graphene–polymer composite heaters in gas-assisted micro hot embossing. RSC Adv. 7 2017 6336-6344. https://doi.org/10.1039/C6RA27618K
[24]呂昀庭,石墨烯複材加熱器應用於軟滾輪熱壓印製程,碩士論文,2017。https://doi.org/10.6342/NTU201702870
[25]林宗慶。石墨烯高分子奈米複合材料之研究。碩士論文。東南科技大學。2014。https://hdl.handle.net/11296/vjnkz6
[26]Yun-Hong Zhao, Zhen-Kun Wu, Shu-Lin Bai, Study on thermal properties of graphene foam/graphene sheets filled polymer composites. Composites: Part A 72 (2015) 200–206. https://doi.org/10.1016/j.compositesa.2015.02.011
[27]Kun-Cheng Ke, Cih Cheng, et al. A novel flexible heating element using graphene polymeric composite ink on polyimide film. Microsystem Technologies volume 24 (2018) 3283–3289 https://doi.org/10.1007/s00542-018-3824-3
[28]Hairong Kou, Lei Zhang, et al. Wireless flexible pressure sensor based on micro-patterned Graphene/PDMS composite. Sensors and Actuators A 277 (2018) 150–156. https://doi.org/10.1016/j.sna.2018.05.015
[29]王武軒。發展網印塗佈大面積石墨烯加熱器 應用於微熱壓成型之研究。碩士論文。2020。國立高雄科技大學。https://hdl.handle.net/11296/6kmfh5
[30]武冠宇。發展自加熱軟模具應用於微熱壓成型製程。碩士論文。2022。國立高雄科技大學。https://hdl.handle.net/11296/3p762y
[31]P. Ketikis, E. Damopoulos, et al. Preparation by direct mixing and characterization of graphene nanoplatelet filled poly(dimethyl siloxane) composites. Materials Today: Proceedings 54 (2022) 113–117. https://doi.org/10.1016/j.matpr.2022.01.328
[32]Xiaoyan Zhang, Anthony C. Coleman, et al. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem. Commun. 46 2010 7539-7541. https://doi.org/10.1039/C0CC02688C
[33]Weina Zhang, Wei He, Xinli Jing, Preparation of a Stable Graphene Dispersion with High Concentration by Ultrasound. J. Phys. Chem. B 114 2010 10368–10373. https://doi.org/10.1021/jp1037443
[34]Bin Zhang, Tijun Chen, Study of Ultrasonic Dispersion of Graphene Nanoplatelets. Materials 12 2019 1757. https://doi.org/10.3390/ma12111757
[35]Nianben Zheng , Long Wang , Zhiqiang Sun, The effects of ultrasonication power and time on the dispersion stability of few-layer graphene nanofluids under the constant ultrasonic energy consumption condition. Ultrasonics Sonochemistry 80 (2021) 105816. https://doi.org/10.1016/j.ultsonch.2021.105816
[36]蕭氏硬度試驗(Shore),志虹熱處理股份有限公司
[37]FLUKO針對石墨烯納米材料的分散解決方案,石墨烯聯盟,人人焦點,2020

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊