|
[1] R. M. Adin, I. Gessel, and Y. Roichman, Signed Mahonians, J. Combin. Theory Ser. A 109 (2005) 25–43. [2] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Grad. Texts in Math., vol. 231, Springer, New York, 2005. [3] R. J. Clarke, E. Steingrímsson, and J. Zeng, New Euler-Mahonian statistics on permutations and words, Adv. in Appl. Math. 18 (1997) 237–270. [4] S.-P. Eu, T.-S. Fu, H.-C. Hsu, H.-C. Liao, and W.-L. Sun, Signed mahonian identities on permutations with subsequence restrictions, J. Combin. Theory Ser. A 170 (2020) 105–131. [5] D. Foata and M. P. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978) 143–159. [6] P. A. MacMahon, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math. 35 (1913) 281–322. [7] D. E. Knuth, The Art of Computer Programming, vol. 3, Addison–Wesley, 1998. [8] T. K. Petersen, The sorting index, Adv. in Appl. Math. 47 (2011) 615–630. [9] T. K. Petersen, R. Biagioli, M. Novick, and A. Woo, Depth in classical Coxeter groups, J. Algebr. Comb. 44 (2016) 645–676. [10] T. K. Petersen and T. K. Tenner, The depth of a permutation, J. Comb. 6 (1–2) (2015) 145–178. [11] O. Rodriguez, Note sur les inversions, ou dérangements produits dans les permutations, J. Math. 4 (1839) 236–240. [12] M. Wachs, An involution for signed Eulerian numbers, Discrete Math. 99 (1992) 59–62.
|