漁業統計年報/漁業統計/行政院農委會漁業署,2021。
林峰右,2017。石斑魚繁養殖技術與管理 水產試驗所特刊 23,37-48頁。
陸若眉,2020。高植物性蛋白飼料中添加甲硫胺酸及牛磺酸對龍膽石斑成長、體組成與牛磺酸狀態之影響。國立屏東科技大學水產養殖系所碩士論文,屏東縣。Agboola, J.O., Chikwati, E.M., Hansen, J.Ø., Kortner, T.M., Mydland, L.T., Krogdahl, Å., Djordjevic, B., Schrama, J. W., Øverland, M., 2022. A meta-analysis to determine factors associated with the severity of enteritis in Atlantic salmon (Salmo salar) fed soybean meal-based diets. Aquaculture 555, 738214.
Albrektsen, S., Kortet, R., Skov, P.V., Ytteborg, E., Gitlesen, S., Kleinegris, D., Mydland, L.T., Hansen, J.Ø., Lock, E.J., Mørkøre, T., James, P., Wang, X., Whitaker, R.D., Vang, B., Hatlen, B., Daneshvar, E., Bhatnagar, A., Jensen, L.B., Øverland, M., 2022. Future feed resources in sustainable salmonid production: A review. Rev. Aquac. 14, 1790-1812.
AOAC (Association of Official Analytical Chemists), 1995. Official methods of analysis, 16th edn. AOAC, Arlington, VA, USA.
Barañano, D.E., Rao, M., Ferris, C.D., Snyder, S.H., 2002. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. U. S. A. 99, 16093-16098.
Beaudoin, J.J., Brouwer, K.L.R., Malinen, M.M., 2020. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol. Ther. 211, 107542.
Bonvini, E., Parma, L., Badiani, A., Fontanillas, R., Gatta, P.P., Sirri, F., Nannoni, E., Bonaldo, A., 2018. Integrated study on production performance and quality traits of European sea bass (Dicentrarchus labrax) fed high plant protein diets. Aquaculture 484, 126-132.
Brosnan, J.T., Brosnan, M.E., 2006. The Sulfur-Containing Amino Acids: An Overview. J. Nutr. 136, 1636-1640
Cavrois-Rogacki, T., Leeming, D., Lopez, P.M., Davie, A., Migaud, H., 2022. Plant-based protein ingredients can successfully replace fish meal in the diet of ballan wrasse (Labrus bergylta) juveniles. Aquaculture 546, 737419.
Chatzifotis, S., Polemitou, I., Divanach, P., Antonopoulou, E., 2008. Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture 275, 201-208.
Chiang, J.Y.L., 2004. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J. Hepatol. 40, 539-551.
Chiang, J.Y.L., 2009. Bile acids: regulation of synthesis: Thematic Review Series: Bile Acids. J. Lipid Res. 50, 1955-1966.
Chou, H.Y., Lin, Y.H., Shiau, S.Y., 2008. Nutrition, immunology and health management of groupers. In: Grouper Aquaculture, Liao, I.C., Leaño, E.M. (Eds.), Asian Fisheries Society, Manila, Philippines, World Aquaculture Society, Louisiana, USA, The Fisheries Society of Taiwan, Keelung, Taiwan, and National Taiwan Ocean University, Keelung, Taiwan. pp. 189-205.
Dawson, P.A., Lan, T., Rao, A., 2009. Bile acid transporters. J. Lipid Res. 50, 2340-2357.
de Moura, L.B., Diógenes, A.F., Campelo, D.A.V., de Almeida, F.L.A., Pousão-Ferreira, P.M., Furuya, W.M., Peres, H., Oliva-Teles, A., 2019. Nutrient digestibility, digestive enzymes activity, bile drainage alterations and plasma metabolites of meagre (Argyrosomus regius) feed high plant protein diets supplemented with taurine and methionine. Aquaculture 511, 734231.
Deng, J., Mai, K., Ai, Q., Zhang, W., Wang, X., Tan, B., Xu, W., Liufu, Z., Ma, H., 2010. Interactive effects of dietary cholesterol and protein sources on growth performance and cholesterol metabolism of Japanese flounder (Paralichthys olivaceus). Aquac. Nutr. 16, 419-429.
El-Sayed, A.F.M., 1999. Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179, 149-168.
FAO (Food and Agriculture Organization) Yearbooks of FishStatJ, 2022. Food and Agriculture Organization of the United Nations, Rome.
Folch, J., Lees, M., Sloane-Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509.
Francis, G., Makkar, H.P.S., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197-227.
Galkanda-Arachchige, H.S.C., Wilson, A.E., Davis, D.A., 2020. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: a meta-analysis. Rev. Aquac. 12, 1624-1636.
Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Souza, E.J, Stone, D., Wilson, R., Wurtele, E., 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac. Res. 38, 551-579.
Gaylord, T.G., Teague, A.M., Barrows, F.T., 2006. Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 37, 509-517.
Goto, T., Mochizuki, A., Hasumi, F., 2002. Distribution and activities of enzymes involved in taurine biosynthesis in the liver of fish. Suisanzoshoku 50, 443-449.
Goto, T., Takagi, S., Ichiki, T., Sakai, T., Endo, M., Yoshida, T., Ukawa, M., Murata, H., 2001. Studies on the green liver in cultured red sea bream fed low level and non-fish meal diets: Relationship between hepatic taurine and biliverdin levels. Fish. Sci. 67, 58-63.
Goto, T., Ui, T., Une, M., Kuramoto, T., Kihira, K., Hoshita, T., 1996. Bile salt composition and distribution of the D-cysteinolic acid conjugated bile salts in fish. Fish. Sci. 62, 606-609.
Gu, M., Bai, N., Kortner, T.M., 2017. Taurocholate supplementation attenuates the changes in growth performance, feed utilization, lipid digestion, liver abnormality and sterol metabolism in turbot (Scophthalmus maximus) fed high level of plant protein. Aquaculture 468, 597-604.
Hamaguchi, T., Azuma, J., Schaffer, S., 1991. Interaction of taurine with methionine: inhibition of myocardial phospholipid methyltransferase. J. Cardiovasc. Pharmacol. 18, 224-230.
Han, Y., Koshio, S., Jiang, Z., Ren, T., Ishikawa, M., Yokoyama, S., Gao, J., 2014. Interactive effects of dietary taurine and glutamine on growth performance, blood parameters and oxidative status of Japanese flounder Paralichthys olivaceus. Aquaculture 434, 348-354.
Huxtable, R., Bressler, R., 1973. Effect of taurine on a muscle intracellular membrane. Biochim. Biophys. Acta-Biomembr. 323, 573-583.
Kanashiro, E., Díaz-Rosales, P., Castro, C., Diógenes, A., Oliva-Teles, A., Peres, H., 2014. Effect taurine and hydroxyproline supplementation in low fishmeal diets for European seabass (Dicentrarchus labrax). Aquaculture Europe. San Sebastián, Spain, October 14-17, 2014, pp. 15-17.
Karpen, H.E., Karpen, S.J., 2017. Bile acid metabolism during development. In Fetal and Neonatal Physiology, Polin, R.A., Abman, S.H., Rowitch, D.H., Benitz, W.E., Fox, W.W. (Eds.), Elsevier, Philadelphia, Pennsylvania, pp. 913-929.
Kim, K.H., Choi, J.M., Li, F., Dong, B., Wooton-Kee, C.R., Arizpe, A., Anakk, S., Jung, S.Y., Hartig, S.M., Moore, D.D., 2019. Constitutive androstane receptor differentially regulates bile acid homeostasis in mouse models of intrahepatic cholestasis. Hepatol. Commun. 3, 147-159.
Kim, S.K., Matsunari, H., Takeuchi, T., Yokoyama, M., Murata, Y., Ishihara, K., 2007. Effect of different dietary taurine levels on the conjugated bile acid composition and growth performance of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Aquaculture 273, 595-601.
Kim, S.K., Matsunari, H., Takeuchi, T., Yokoyama, M., Furuita, H., Murata, Y., Goto, T., 2008. Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids 35, 161-168.
Kong, Y., Li, M., Wu, X., Xia, C., Liu, X., Wang, G., 2022. Protective mechanism of homologous lactic acid bacteria against cholestatic liver injury in snakehead fish. Aquaculture 550, 737845.
Kotzamanis, Y., Kumar, V., Tsironi, T., Grigorakis, K., Ilia, V., Vatsos, I., Brezas, A., van Eys, J., Gisbert, E., 2020. Taurine supplementation in high-soy diets affects fillet quality of European sea bass (Dicentrarchus labrax). Aquaculture 520, 734655.
Kubitz, R., Dröge, C., Stindt, J., Weissenberger, K., Häussinger, D., 2012. The bile salt export pump (BSEP) in health and disease. Clin. Res. Hepatol. Gastroenterol. 36, 536-553.
Li, P.Y., Wang, J.Y., Song, Z.D., Zhang, L.M., Zhang, H., Li, X.X., Pan, Q., 2015. Evaluation of soy protein concentrate as a substitute for fishmeal in diets for juvenile starry flounder (Platichthys stellatus). Aquaculture 448, 578-585.
Li, X., Zheng, S., Wu, G., 2021. Nutrition and functions of amino acids in fish. In: Amino acids in nutrition and health: amino acids in the nutrition of companion, zoo and farm animals. Wu, G. (Ed.), Springer, Switzerland, pp.133-168.
Lin, Y.H., 2019. Regulation on lipid utilization and metabolism of fish fed high soybean meal-based diet. 12th Symposium of World’s Chinese Scientists on Nutrition and Feeding of Finfish and Shellfish. Zhengzhou, PRC, October 14-18, 2019.
Lin, Y.H., Lu, R.M., 2020. Dietary taurine supplementation enhances growth and nutrient digestibility in giant grouper Epinephelus lanceolatus fed a diet with soybean meal. Aquac. Rep. 18, 100464.
Lionarons, D.A., Boyer, J.L., Cai, S.Y., 2012. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2). J. Lipid Res. 53, 1535-1542.
Liu, Y., Yang, P., Hu, H., Li, Y., Dai, J., Zhang, Y., Ai, Q., Xu, W., Zhang, W., Mai, K., 2018. The tolerance and safety assessment of taurine as additive in a marine carnivorous fish, Scophthalmus maximus L . Aquac. Nutr. 24, 461-471.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCt method. Methods 25, 402-408.
Lončar, J., Popović, M., Zaja, R., Smital, T., 2010. Gene expression analysis of the ABC efflux transporters in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 151, 209-215.
Lunger, A.N., McLean, E., Gaylord, T.G., Kuhn, D., Craig, S.R., 2007. Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture 271, 401-410.
Martinez, J.B., Chatzifotis, S., Divanach, P., Takeuchi, T., 2004. Effect of dietary taurine supplementation on growth performance and feed selection of sea bass (Dicentrarchus labrax) fry fed with demand-feeders. Fish. Sci. 70, 74-79.
Martins, N., Diógenes, A.F., Magalhães, R., Matas, I., Oliva-Teles, A., Peres, H., 2021. Dietary taurine supplementation affects lipid metabolism and improves the oxidative status of European seabass (Dicentrarchus labrax) juveniles. Aquaculture 531, 735820.
Martins, N., Estevão-Rodrigues, T., Diógenes, A.F., Diaz-Rosales, P., Oliva-Teles, A., Peres, H., 2018. Taurine requirement for growth and nitrogen accretion of European sea bass (Dicentrarchus labrax, L.) juveniles. Aquaculture 494, 19-25.
Matsumoto, J., Erami, K., Ogawa, H., Doi, M., Kishida, T., Ebihara, K., 2005. The protease-resistant fraction of smoked, dried bonito lowers serum cholesterol in ovariectomized rats fed cholesterol-free diets. J. Food Sci. 70, 467-474.
Matsunari, H., Furuita, H., Yamamoto, T., Kim, S.K., Sakakura, Y., Takeuchi, T., 2008. Effect of dietary taurine and cystine on growth performance of juvenile red sea bream Pagrus major. Aquaculture 274, 142-147.
Matsunari, H., Takeuchi, T., Takahashi, M., Mushiake, K., 2005. Effect of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fish. Sci. 71, 1131-1135.
Mohan, K., Rajan, D.K., Muralisankar, T., Ganesan, A.R., Sathishkumar, P., Revathi, N., 2022. Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 553, 738095.
Mohd Faudzi, N., Yong, A.S.K., Shapawi, R., Senoo, S., Biswas, A., Takii, K., 2018. Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown‐marbled grouper (Epinephelus fuscoguttatus) × giant grouper (E. lanceolatus) juvenile. Aquac. Res. 49, 431-441.
Murashita, K., Yoshiura, Y., Chisada, S., Furuita, H., Sugita, T., Matsunari, H., Iwashita, Y., Yamamoto, T., 2014. Homologue gene of bile acid transporters ntcp, asbt, and ost-alpha in rainbow trout Oncorhynchus mykiss: tissue expression, effect of fasting, and response to bile acid administration. Fish Physiol. Biochem. 40, 511-525.
Nelson, J.S., Grande, T.C., Wilson, M.V., 2016. Fishes of the World. John Wiley & Sons, Hoboken, New Jersey, USA, p. 428.
Ngandzali, B.O., Zhou, F., Xiong, W., Shao, Q.J., Xu, J.Z., 2011. Effect of dietary replacement of fish meal by soybean protein concentrate on growth performance and phosphorus discharging of juvenile black sea bream, Acanthopagrus schlegelii. Aquac. Nutr. 17, 526-535.
Nicolaou, M., Andress, E.J., Zolnerciks, J.K., Dixon, P.H., Williamson, C., Linton, K.J., 2012. Canalicular ABC transporters and liver disease. J. Pathol. 226, 300-315.
Nishimura, M., Naito, S., 2005. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20, 452-477.
Norambuena, F., Lewis, M., Hamid, N.K.A., Hermon, K., Donald, J.A., Turchini, G.M., 2013. Fish oil replacement in current aquaculture feed: is cholesterol a hidden treasure for fish nutrition? PLoS One 8, 81705.
Paulazo, M.A., Sodero, A.O., 2020. Analysis of cholesterol in mouse brain by HPLC with UV detection. PLoS One 15, 0228170.
Rabergh, C., Ziegler, K., Isomaa, B., Lipsky, M., Eriksson, J., 1994. Uptake of taurocholic acid and cholic acid in isolated hepatocytes from rainbow trout. Am. J. Physiol.-Gastroint. Liver Physiol. 267, 380-386.
Rasheed, R., Ashraf, M.A., Ahmad, S.J.N., Parveen, N., Hussain, I., Bashir, R., 2022. Taurine regulates ROS metabolism, osmotic adjustment, and nutrient uptake to lessen the effects of alkaline stress on Trifolium alexandrinum L. plants. S. Afr. J. Bot. 148, 482-498.
Sabbagh, M., Schiavone, R., Brizzi, G., Sicuro, B., Zilli, L., Vilella, S., 2019. Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture 511, 734220.
Salze, G.P., Davis, D.A., 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture 437, 215-229.
Schaffer, S., Kim, H.W., 2018. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. 26, 225-241.
Schaffer, S.W., Chian, J.J., KC, R., Azuma, J., 2010. Physiological roles of taurine in heart and muscle. J. Biomed. Sci. 17, S2.
Sheen, S.S., 2000. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture 189, 277-285.
Sitaula, S., Burris, T.P., 2016. Cholesterol and other steroids. In: Encyclopedia of Cell Biology, Bradshaw, R.A., Stahl, P.D. (Eds.), Academic Press, USA, pp. 173-179.
Slijepcevic, D., Abbing, R.L.P.R., Fuchs, C.D., Haazen, L.C.M., Beuers, U., Trauner, M., Elferink, R.P.J.O., van de Graaf, S.F.J., 2018. Na+-taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice. Hepatology 68, 1057-1069.
Stieger, B., 2009. Recent insights into the function and regulation of the bile salt export pump (ABCB11). Curr. Opin. Lipidology 20, 176-181.
Stieger, B., 2011. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. In Drug Transporters, Fromm, M.F., Kim, R.B. (Eds.), Springer Berlin, Heidelberg, Germany, pp. 205-259.
Stieger, B., Meier, Y., Meier, P.J., 2007. The bile salt export pump. Pflugers Arch. 453, 611-620.
Takagi, S., Murata, H., Goto, T., Hatate, H., Endo, M., Yamashita, H., Miyatake, H., Ukawa, M., 2009. Necessity of dietary taurine supplementation for preventing green liver symptom and improving growth performance in yearling red sea bream Pagrus major fed nonfishmeal diets based on soy protein concentrate. Fish. Sci. 76, 119-130.
Takagi, S., Murata, H., Goto, T., Hatate, H., Endo, M., Yamashita, H., Miyatake, H., Ukawa, M., 2011. Role of taurine deficiency in inducing green liver symptom and effect of dietary taurine supplementation in improving growth in juvenile red sea bream Pagrus major fed non-fishmeal diets based on soy protein concentrate. Fish. Sci. 77, 235-244.
Takagi, S., Murata, H., Goto, T., Ichiki, T., Endo, M., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., Ukawa, M., 2006. Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 72, 1191-1199.
Takagi, S., Murata, H., Goto, T., Ichiki, T., Munasinghe, D.M.S., Endo, M., Matsumoto, T., Sakurai, A., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., Ukawa, M., Kuramoto, T., 2005. The green liver syndrome is caused by taurine deficiency in yellowtail (Seriola quinqueradiata) fed diets without fishmeal. Aquac. Sci. 53, 279-290.
Ueki, I., Stipanuk, M.H., 2009. 3T3-L1 Adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J. Nutr. 139, 207-214.
Vallim, T.Q.D., Tarling, E.J., Edwards, P.A., 2013. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657-669.
Walker, A.B., Sidor, I.F., O'Keefe, T., Cremer, M., Berlinsky, D.L., 2010. Partial replacement of fish meal with soy protein concentrate in diets of atlantic cod. N. Am. J. Aqualcult. 72, 343-353.
Wang, H., Chen, J., Hollister, K., Sowers, L.C., Forman, B.M., 1999. Endogenous bile acids are ligands for the nuclear receptor fxr/bar. Mol. Cell 3, 543-553.
Wang, W., Seward, D.J., Li, L., Boyer, J.L., Ballatori, N., 2001. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl. Acad. Sci. U. S. A. 98, 9431-9436.
Wang, X., He, G., Mai, K., Xu, W., Zhou, H., 2016. Differential regulation of taurine biosynthesis in rainbow trout and Japanese flounder. Sci. Rep. 6, 21231.
Wójcicka, G., Jamroz-Wiśniewska, A., Horoszewicz, K., Bełtowski, J., 2007. Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig. Med. Dosw. 61, 736-759.
Wu, T.M., Jiang, J.J., Lu, R.M., Lin, Y.H., 2020. Effects of dietary inclusion of soybean meal and cholesterol on the growth, cholesterol status and metabolism of the giant grouper (Epinephelus lanceolatus). Aquac. Nutr. 26, 351-357.
Xu, G., Li, H., Pan, L.X., Shang, Q., Honda, A., Ananthanarayanan, M., Erickson, S.K., Shneider, B.L., Shefer, S., Bollineni, J., Forman, B. M., Matsuzaki, Y., Suchy, F.J., Tint, G.S., Salen, G., 2003. FXR-mediated down-regulation of CYP7A1 dominates LXRα in long-term cholesterol-fed NZW rabbits. J. Lipid Res. 44, 1956-1962.
Yeh, Y.H., Hwang, D.F., 2001. High-performance liquid chromatographic determination for bile components in fish, chicken and duck. J. Chromatogr. B. 751, 1-8.
Yokoyama, M., Takeuchi, T., Park, G.S., Nakazoe, J., 2001. Hepatic cysteinesulphinate decarboxylase activity in fish. Aquac. Res. 32, 216-220.
Yun, B., Mai, K., Zhang, W., Xu, W., 2011. Effects of dietary cholesterol on growth performance, feed intake and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 319, 105-110.
Zhang, J., Zhong, L., Peng, M., Chu, W., Liu, Z., Dai, Z., Hu, Y., 2019. Replacement of fish meal with soy protein concentrate in diet of juvenile rice field eel Monopterus albus. Aquac. Rep. 15, 100235.
Zhu, L., Wang, L., Cao, F., Liu, P., Bao, H., Yan, Y., Dong, X., Wang, D., Wang, Z., Gong, P., 2018. Modulation of transport and metabolism of bile acids and bilirubin by chlorogenic acid against hepatotoxicity and cholestasis in bile duct ligation rats: involvement of SIRT1-mediated deacetylation of FXR and PGC-1α. J. Hepato-Biliary-Pancreat. Sci. 25, 195-205.
Zhu, T., Ai, Q., Mai, K., Xu, W., Zhou, H., Liufu, Z., 2014. Feed intake, growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed defatted fish meal diets with graded levels of cholesterol. Aquaculture 428-429, 290-296.
Zhu, T., Mai, K., Xu, W., Ai, Q., 2018. Effect of dietary cholesterol and phospholipids on feed intake, growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.). Aquaculture 495, 443-451.