跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇華岑
研究生(外文):Junior
論文名稱:巨噬細胞從CSF-1依賴型到獨立型轉變過程中對Th2反應之轉錄組元數據分析
論文名稱(外文):Transcriptomic Metadata Analysis of the Macrophages During CSF-1-dependent to -independent Transition Under Th2 response
指導教授:張格東
指導教授(外文):Chang, Ko-Tung
口試委員:黃富穎許岩得
口試委員(外文):Huang, Fu-YingHsuuw, Yan-Der
口試日期:2022-12-24
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:英文
論文頁數:83
中文關鍵詞:IL-4轉錄組學M-CSF先天免疫巨噬細胞Th2
外文關鍵詞:IL-4TranscriptomicM-CSFInnate ImmunityMacrophagesTh2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在 M1/M2 範圍內,CSF-1 (M-CSF) 對於支持巨噬細胞分化、極化和激活有很大的貢獻。有趣的是,腫瘤細胞也能夠為腫瘤微環境產生 M-CSF,並通過促進 M2 樣巨噬細胞極化來支持腫瘤的進展。如今,通過阻斷 M-CSF 信號通路來對抗癌症相關疾病的策略已在臨床研究中廣泛採用,以防止 M2 樣分化。然而,根據一些文獻,阻斷 M-CSF 是自相矛盾的,因為它既可以縮小腫瘤,也可以使腫瘤增大。我們之前的研究表明,雖然 M-CSF 被撤回,但 CSF-1 驅動的骨髓來源的 M0 巨噬細胞 (BMDM) 被引導通過內源性 CSF-1 激活重新編程為 M2 樣狀態。其他人也證明,在小鼠 CSF-1R 的阻斷下,巨噬細胞可以通過 CSF-1 獨立增殖程序指導線蟲感染引起的 Th2 反應的生存能力和擴張。為了進一步了解巨噬細胞中 Th2 反應在 CSF-1 依賴到獨立轉變之間的反應,進行了全面的轉錄組學分析。在 CSF-1 依賴性向 CSF-1 非依賴性轉變後,我們在具有 IL-4 刺激的巨噬細胞中發現了 332 個 DEG。上調的 DEGs 主要涵蓋細胞外基質組織、傷口癒合和脂質衍生物生物合成,而下調的 DEGs 主要代表炎症、免疫反應和趨化因子相互作用。此外,蛋白質-蛋白質相互作用網絡還顯示出 ECM-受體相互作用的上調和炎症相關通路的下調,表明傷口癒合過程得到加強。預計,通過整合我們以前的元數據,可以突出顯示在過渡期間負責 Th2 響應的基因。IL-4 的存在與 CSF-1 非依賴性途徑相結合可以將巨噬細胞的表型改變為載脂巨噬細胞。這是通過其促進脂質衍生物相關活性、促進抗炎反應、免疫耐受和吞噬能力而實現的。
Across the M1/M2 spectrum, CSF-1 (M-CSF) contribute greatly to support macrophages differentiation, polarization, and activation. Intriguingly, tumor cells are also capable of producing M-CSF to the tumor microenvironment and support tumor progression by promoting M2-like macrophages polarization. Nowadays, the strategy to combat cancer-related disease by blocking M-CSF signaling pathways has been adopted widely in the clinical study to prevent M2-like differentiation. However, according to several literatures, poor monotherapy efficacy of anti-CSF1R has been observed and therefore, is not sufficient enough to reduce tumor progression. Our previous study stated that while M-CSF was withdrawn, CSF-1 driven bone marrow derived M0 macrophages (BMDM) were conducted to reprogram into M2-like state via endogenous CSF-1 activation. Others has also demonstrated that under the blockade of CSF-1R in mice, macrophages could direct the survivability and expansion via CSF-1-independent program of proliferation upon Th2 response provoked by nematode infection. To further understand the reaction of Th2 response in macrophages between CSF-1-dependent to independent transition, a comprehensive transcriptomic analysis was proceeded. We found 332 DEGs in macrophages with IL-4 stimulation following CSF-1-dependent to CSF-1-independent transition. The upregulated DEGs mainly covered extracellular matrix organization, wound healing, and lipid-derivatives biosynthesis while the downregulated DEGs mostly represented inflammation, immune response, and chemokine interaction. Furthermore, protein-protein interaction network also displayed an upregulation in ECM-receptor interaction and a downregulation in inflammation-related pathways, suggesting an enhancement in wound healing processes. Expectedly, by integrating our previous metadata, the genes responsible for Th2 response during the transition could be highlighted. The presence of IL-4 in combination with CSF-1-independent pathway could alter the phenotype of macrophages into lipid-laden macrophage, proven by its capability on promoting lipid derivatives-related activity, promoting anti-inflammation response, immune-tolerance, and phagocytosis ability.
摘要 i
ACKNOWLEDEMENT v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
APPENDIX OF CONTENTS xi
I. INTRODUCTION 1
1.1 Background 1
1.2 The Aim of This Study 4
II. LITERATURE REVIEW 5
2.1 Immune System 5
2.1.1 Innate Immune System 6
2.1.2 Adaptive Immune System 7
2.2 Macrophage 8
2.2.1 Lipid-laden Macrophage 10
2.3 Cytokines 11
2.3.1 Th1-type Cytokines 13
2.3.2 Th2-type Cytokines 13

2.4 Colony Stimulating Factor 15
2.4.1 Macrophages-Colony Stimulating Factor 16
2. 5 Transcriptomic Profile 19
III.MATERIALS AND METHODS 22
3.1 Animals 22
3.2 Differentiation of Bone Marrow-Derived Macropahages (BMDMs) 22
3.3 CSF-1 Independent Macrophages Polarization Under IL-4 Stimulation 22
3.4 Library Preparation and RNA-Sequencing 23
3.5 Transcriptome Analysis 24
3.6 Protein-Protein Interaction Analysis 24
3.7 Comprehensive and systematic transcriptomic analysis comparison 24
IV. RESULTS 26
4.1 CSF-1-independent Macrophages Exhibit Higher Capability of Wound Healling and Immune tolerance under IL-4 Stimulation 26
4.2 Protein-Protein Interaction Network Revealed ECM Organization & Remodelling as The Most Significant Network in CSF-1-independent Macrophages Under IL-4 Stimulus 30
4.3 Systematic and Comprehensive Transcriptomic Profiling Analysis Unveiled Distinct Phenotypes in CSF-1-independent Macrophages Before and After IL-4 Administration 32
4.4 Non-overlapped Area Revealed Degs Expressed Exclusively in The Response to The Absence/Presence of IL-4 36
4.5 Overlapped Area Revealed Steroid and Cholesterol Biosynthesis as The Most Unique Phenotypes After Stimulation of IL-4 in The CSF-1-independent Macrophages 39
4.6 Lipid-laden-associated Genes were Upregulated in CSF-1-independent Macrophages After IL-4 Induction 44
V. DISCUSSION 48
VI. CONCLUSION 54
VII. REFERENCES 55
VII. APPENDIX 77
Alikhan M.A., Jones C.V., Williams T.M., Beckhouse A.G., Fletcher A.L., Kett M.M., Sakkal S., Samuel C.S., Ramsay R.G., Deane J.A., et al. 2011. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol. 179:1243–1256 10.1016/j.ajpath.2011.05.037
Amir, R., Argoff, C. E., Bennett, G. J., Cummins, T. R., Durieux, M. E., Gerner, P., ... & Strichartz, G. R. (2006). The role of sodium channels in chronic inflammatory and neuropathic pain. The Journal of Pain, 7(5), S1-S29.
Armstrong, E. J., Chen, D. C., Westin, G. G., Singh, S., McCoach, C. E., Bang, H., ... & Laird, J. R. (2014). Adherence to guideline‐recommended therapy is associated with decreased major adverse cardiovascular events and major adverse limb events among patients with peripheral arterial disease. Journal of the American Heart Association, 3(2), e000697.
Ashburner, M., Ball, C., Blake, J. et al. Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000). https://doi.org/10.1038/75556
Assunção, L. S., Magalhães, K. G., Carneiro, A. B., Molinaro, R., Almeida, P. E., Atella, G. C., ... & Bozza, P. T. (2017). Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1862(2), 246
Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International journal of molecular sciences, 19(6), 1801. https://doi.org/10.3390/ijms19061801
Baghdadi, M., Endo, H., Takano, A., Ishikawa, K., Kameda, Y., Wada, H., ... & Seino, K. I. (2018). High co-expression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers. Scientific reports, 8(1), 1-10.
Bartoschek, M., & Pietras, K. (2018). PDGF family function and prognostic value in tumor biology. Biochemical and biophysical research communications, 503(2), 984-990.
Beutler, B. (2004). Innate immunity: an overview. Molecular immunology, 40(12), 845-859.
Borthwick, F.; Taylor, J.M.; Bartholomew, C.; Graham, A. Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages. FEBS Lett. 2009, 583, 1147–1153.
Boven, L. A., Van Meurs, M., Van Zwam, M., Wierenga-Wolf, A., Hintzen, R. Q., Boot, R. G., ... & Laman, J. D. (2006). Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain, 129(2), 517-526.
Brazil, J. C., Louis, N. A., & Parkos, C. A. (2013). The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflammatory bowel diseases, 19(7), 1556-1565.
Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res. 2014 Feb;181(2):111-30. doi: 10.1667/RR13515.1. Epub 2014 Jan 7. PMID: 24397478; PMCID: PMC4064942.
Brüstle, A., Heink, S., Huber, M., Rosenplänter, C., Stadelmann, C., Yu, P., ... & Lohoff, M. (2007). The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature immunology, 8(9), 958-966.
C Maranhao, R., & CA Leite, A. (2015). Development of anti-atherosclerosis therapy based on the inflammatory and proliferative aspects of the disease. Current Pharmaceutical Design, 21(9), 1196-1204.
Cannarile, M. A., Weisser, M., Jacob, W., Jegg, A. M., Ries, C. H., & Rüttinger, D. (2017). Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. Journal for immunotherapy of cancer, 5(1), 1-13.
Chakraborty, S., Pramanik, J. & Mahata, B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun 22, 125–140 (2021). https://doi.org/10.1038/s41435-021-00139-3
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S3-23. doi: 10.1016/j.jaci.2009.12.980. PMID: 20176265; PMCID: PMC2923430.
Chen, Y. C., Lai, Y. S., Hsuuw, Y. D., & Chang, K. T. (2021). Withholding of M-CSF Supplement Reprograms Macrophages to M2-Like via Endogenous CSF-1 Activation. International journal of molecular sciences, 22(7), 3532.
Chockalingam, S., & Ghosh, S. S. (2014). Macrophage colony-stimulating factor and cancer: a review. Tumor Biology, 35(11), 10635-10644.
Choi, J., Kim, H., Kim, Y., Jang, M., Jeon, J., Hwang, Y. I., ... & Lee, W. J. (2015). The anti-inflammatory effect of GV1001 mediated by the downregulation of ENO1-induced pro-inflammatory cytokine production. Immune network, 15(6), 291-303.
Cormier, S. A., Yuan, S., Crosby, J. R., Protheroe, C. A., Dimina, D. M., Hines, E. M., ... & Lee, J. J. (2002). TH 2-Mediated Pulmonary Inflammation Leads to the Differential Expression of Ribonuclease Genes by Alveolar Macrophages. American journal of respiratory cell and molecular biology, 27(6), 678-687.
Cowie, M. R., Woehrle, H., Wegscheider, K., Angermann, C., d’Ortho, M. P., Erdmann, E., ... & Teschler, H. (2015). Adaptive servo-ventilation for central sleep apnea in systolic heart failure. New England Journal of Medicine, 373(12), 1095-1105."
Cretney, E., Xin, A., Shi, W., Minnich, M., Masson, F., Miasari, M., ... & Kallies, A. (2011). The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature immunology, 12(4), 304-311.
Dai, X. M., Zong, X. H., Sylvestre, V., & Stanley, E. R. (2004). Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1–deficient Csf1 op/Csf1 op mice by transgenic expression of cell surface CSF-1. Blood, 103(3), 1114-1123.
DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., & Coussens, L. M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer cell, 16(2), 91–102. https://doi.org/10.1016/j.ccr.2009.06.018
Ding, A. S., Routkevitch, D., Jackson, C., & Lim, M. (2019). Targeting myeloid cells in combination treatments for glioma and other tumors. Frontiers in immunology, 10, 1715.
Dong J, Ma Q. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis. Front Immunol. 2018 May 22;9:1120. doi: 10.3389/fimmu.2018.01120. PMID: 29872441; PMCID: PMC5972321.
e Sousa, C. R. (2004). Activation of dendritic cells: translating innate into adaptive immunity. Current opinion in immunology, 16(1), 21-25.
Eisinger, S., Sarhan, D., Boura, V. F., Ibarlucea-Benitez, I., Tyystjärvi, S., Oliynyk, G., ... & Karlsson, M. C. (2020). Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proceedings of the National Academy of Sciences, 117(50), 32005-32016.
Ekkens, M. J., Shedlock, D. J., Jung, E., Troy, A., Pearce, E. L., Shen, H., & Pearce, E. J. (2007). Th1 and Th2 cells help CD8 T-cell responses. Infection and immunity, 75(5), 2291-2296.
Esser AK, Ross MH, Fontana F, Su X, Gabay A, Fox GC, Xu Y, Xiang J, Schmieder AH, Yang X, Cui G, Scott M, Achilefu S, Chauhan J, Fletcher S, Lanza GM, Weilbaecher KN. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Theranostics. 2020 Jun 12;10(17):7510-7526. doi: 10.7150/thno.44523. PMID: 32685002; PMCID: PMC7359087.
Evans, S. S., Repasky, E. A., & Fisher, D. T. (2015). Fever and the thermal regulation of immunity: the immune system feels the heat. Nature reviews. Immunology, 15(6), 335–349. https://doi.org/10.1038/nri3843
Faura Tellez, G., Willemse, B. W., Brouwer, U., Nijboer-Brinksma, S., Vandepoele, K., Noordhoek, J. A., ... & Koppelman, G. H. (2016). Protocadherin-1 localization and cell-adhesion function in airway epithelial cells in asthma. PLoS One, 11(10), e0163967."
Fleetwood, A. J., Achuthan, A., & Hamilton, J. A. (2016). Colony Stimulating Factors (CSFs). In Encyclopedia of Immunobiology (pp. 586–596). Elsevier. https://doi.org/10.1016/b978-0-12-374279-7.10015-3
Ford, H. Z., Zeboudj, L., Purvis, G. S. D., Ten Bokum, A., Zarebski, A. E., Bull, J. A., Byrne, H. M., Myerscough, M. R., & Greaves, D. R. (2019). Efferocytosis perpetuates substance accumulation inside macrophage populations. Proceedings. Biological sciences, 286(1904), 20190730. https://doi.org/10.1098/rspb.2019.0730
Fu, B., Yin, S., Lin, X., Shi, L., Wang, Y., Zhang, S., ... & Wu, H. (2020). PTPN14 aggravates inflammation through promoting proteasomal degradation of SOCS7 in acute liver failure. Cell Death & Disease, 11(9), 1-10.
Gao Y, Nish SA, Jiang R, Hou L, Licona-Limón P, Weinstein JS, Zhao H, Medzhitov R. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013 Oct 17;39(4):722-32. doi: 10.1016/j.immuni.2013.08.028. Epub 2013 Sep 26. PMID: 24076050; PMCID: PMC4110745."
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628-2629.
Ghisletti, S., Huang, W., Jepsen, K., Benner, C., Hardiman, G., Rosenfeld, M. G., & Glass, C. K. (2009). Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes & development, 23(6), 681-693.
Gil-Varea, E., Urcelay, E., Vilariño-Güell, C. et al. Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. J Neuroinflammation 15, 265 (2018). https://doi.org/10.1186/s12974-018-1307-1
Gordon, S., & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010, 32(5), 593-604.
Gu, X., Xie, S., Hong, D., & Ding, Y. (2019). An in vitro model of foam cell formation induced by a stretchable microfluidic device. Scientific reports, 9(1), 7461. https://doi.org/10.1038/s41598-019-43902-3
Günther, J., Esch, K., Poschadel, N., Petzl, W., Zerbe, H., Mitterhuemer, S., ... & Seyfert, H. M. (2011). Comparative kinetics of Escherichia coli-and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha. Infection and immunity, 79(2), 695-707.
Hamilton, T. A., Zhao, C., Pavicic Jr, P. G., & Datta, S. (2014). Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in immunology, 5, 554.
Hashimoto, S. I., Suzuki, T., Dong, H. Y., Nagai, S., Yamazaki, N., & Matsushima, K. (1999). Serial analysis of gene expression in human monocyte-derived dendritic cells. Blood, The Journal of the American Society of Hematology, 94(3), 845-852."
Hendrickx, D. A., Koning, N., Schuurman, K. G., Strien, M. E. V., Eden, C. G. V., Hamann, J., & Huitinga, I. (2013). Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. Journal of Neuropathology & Experimental Neurology, 72(2), 106-118.
Heymans, S., Corsten, M. F., Verhesen, W., Carai, P., Van Leeuwen, R. E., Custers, K., ... & Schroen, B. (2013). Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation, 128(13),
Hinshaw, D. C., & Shevde, L. A. (2019). The tumor microenvironment innately modulates cancer progression. Cancer research, 79(18), 4557-4566.
Hollmén, M., Karaman, S., Schwager, S., Lisibach, A., Christiansen, A. J., Maksimow, M., ... & Detmar, M. (2016). G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology, 5(3), e1115177.
Hong, G., Zhang, W., Li, H., Shen, X., & Guo, Z. (2013). Separate enrichment analysis of pathways for up- and downregulated genes. Journal of the Royal Society, Interface, 11(92), 20130950. https://doi.org/10.1098/rsif.2013.0950
Huggins, D. N., LaRue, R. S., Wang, Y., Knutson, T. P., Xu, Y., Williams, J. W., & Schwertfeger, K. L. (2021). Characterizing Macrophage Diversity in Metastasis-Bearing Lungs Reveals a Lipid-Associated Macrophage SubsetLipid-Associated Macrophages in Lung Metastasis. Cancer research, 81(20), 5284-5295.
Hume, D. A., & MacDonald, K. P. A. (2012). Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. In Blood (Vol. 119, Issue 8, pp. 1810–1820). American Society of Hematology. https://doi.org/10.1182/blood-2011-09-379214
Hüttelmaier, S., Illenberger, S., Grosheva, I., Rüdiger, M., Singer, R. H., & Jockusch, B. M. (2001). Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. The Journal of cell biology, 155(5), 775-786."
Immunology for Pharmacy. (2012). Elsevier. https://doi.org/10.1016/c2009-0-40304-0
Jaitin, D. A., Adlung, L., Thaiss, C. A., Weiner, A., Li, B., Descamps, H., Lundgren, P., Bleriot, C., Liu, Z., Deczkowska, A., Keren-Shaul, H., David, E., Zmora, N., Eldar, S. M., Lubezky, N., Shibolet, O., Hill, D. A., Lazar, M. A., Colonna, M., Ginhoux, F., … Amit, I. (2019). Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell, 178(3), 686–698.e14. https://doi.org/10.1016/j.cell.2019.05.054
Jalali, S., Bhartiya, D., Lalwani, M. K., Sivasubbu, S., & Scaria, V. (2013). Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PloS one, 8(2), e53823.
Janeway Jr, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual review of immunology, 20(1), 197-216.
Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, Duncan S, Brombacher F, Maizels RM, Hume DA, Allen JE. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med. 2013 Oct 21;210(11):2477-91. doi: 10.1084/jem.20121999. Epub 2013 Oct 7. PMID: 24101381; PMCID: PMC3804948.
Jiang, SY., Li, H., Tang, JJ. et al. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 9, 5138 (2018). https://doi.org/10.1038/s41467-018-07590-3
Jubel, J. M., Barbati, Z. R., Burger, C., Wirtz, D. C., & Schildberg, F. A. (2020). The role of PD-1 in acute and chronic infection. Frontiers in immunology, 11, 487."
Kainulainen, K., Takabe, P., Heikkinen, S., Aaltonen, N., de la Motte, C., Rauhala, L., ... & Pasonen-Seppänen, S. (2022). M1 macrophages induce pro-tumor inflammation in melanoma cells via TNFR–NF-κB signaling. Journal of Investigative Dermatology.
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., ... & Yamanishi, Y. (2007). KEGG for linking genomes to life and the environment. Nucleic acids research, 36(suppl_1), D480-D484.
Karimizadeh, E., Sharifi-Zarchi, A., Nikaein, H. et al. Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis. BMC Med Genomics 12, 199 (2019). https://doi.org/10.1186/s12920-019-0632-2
Kass, D. J., Yu, G., Loh, K. S., Savir, A., Borczuk, A., Kahloon, R., ... & Greenberg, S. M. (2012). Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. The American journal of pathology, 180(5), 1963-1978.
Kawai, T., & Akira, S. (2006). Innate immune recognition of viral infection. Nature immunology, 7(2), 131-137. Kawai, T., & Akira, S. (2006). Innate immune recognition of viral infection. Nature immunology, 7(2), 131-137.
Keegan, A. D., Leonard, W. J., & Zhu, J. (2021). Recent advances in understanding the role of IL-4 signaling. Faculty reviews, 10, 71. https://doi.org/10.12703/r/10-71
Kobayashi, H., Looker, H. C., Satake, E., D’Addio, F., Wilson, J. M., Saulnier, P. J., ... & Krolewski, A. S. (2022). Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes. Science Translational Medicine, 14(657), eabj2109.
Koppelman, G. H., Meyers, D. A., Howard, T. D., Zheng, S. L., Hawkins, G. A., Ampleford, E. J., ... & Postma, D. S. (2009). Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. American journal of respiratory and critical care medicine, 180(10), 929-935.
Kos, J., Nanut, M.P., Prunk, M., Sabotič, J., Dautović, E., & Jewett, A. (2018). Cystatin F as a regulator of immune cell cytotoxicity. Cancer Immunology, Immunotherapy, 67, 1931-1938.
Krawczyk, K. M., Nilsson, H., Allaoui, R., Lindgren, D., Arvidsson, M., Leandersson, K., & Johansson, M. E. (2017). Papillary renal cell carcinoma-derived chemerin, IL-8, and CXCL16 promote monocyte recruitment and differentiation into foam-cell macrophages. Laboratory investigation, 97(11), 1296-1305.
Kubota, Y., Takubo, K., Shimizu, T., Ohno, H., Kishi, K., Shibuya, M., ... & Suda, T. (2009). M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Journal of Experimental Medicine, 206(5), 1089-1102.
Lacey, D. C., Achuthan, A., Fleetwood, A. J., Dinh, H., Roiniotis, J., Scholz, G. M., ... & Hamilton, J. A. (2012). Defining GM-CSF–and macrophage-CSF–dependent macrophage responses by in vitro models. The Journal of Immunology, 188(11), 5752-5765.
Lee, A. G. (2004). How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1666(1-2), 62-87.
Lee, H.L., Jang, J.W., Lee, S.W. et al. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci Rep 9, 3260 (2019). https://doi.org/10.1038/s41598-019-40078-8
Lee-Rueckert, M., Lappalainen, J., Kovanen, P. T., & Escola-Gil, J. C. (2022). Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Frontiers in cardiovascular medicine, 9, 777822. https://doi.org/10.3389/fcvm.2022.777822
Li, Z., Jiang, J., Wang, Z., Zhang, J., Xiao, M., Wang, C., ... & Qin, Z. (2008). Endogenous interleukin-4 promotes tumor development by increasing tumor cell resistance to apoptosis. Cancer research, 68(21), 8687-8694.
Liang, K.-H. (2012). Bioinformatics for Biomedical Science and Clinical Applications. Woodhead Publishing.
Linton MRF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. [Updated 2019 Jan 3]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343489/
Liu, K. L., Wu, J., Zhou, Y., & Fan, J. H. (2015). Increased Sushi repeat-containing protein X-linked 2 is associated with progression of colorectal cancer. Medical Oncology, 32(4), 1-9.
López-Peláez M., I. Soria-Castro, L. Boscá, M. Fernández, S. Alemany. 2011. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: implications for NO synthase 2 expression. Eur. J. Immunol. 41: 1733–1741
Lorenz, G., Moschovaki-Filippidou, F., Würf, V., Metzger, P., Steiger, S., Batz, F., ... & Lech, M. (2019). IFN regulatory factor 4 controls post-ischemic inflammation and prevents chronic kidney disease. Frontiers in immunology, 10, 2162."
Luo, J., Yang, H., & Song, B. L. (2020). Mechanisms and regulation of cholesterol homeostasis. Nature reviews Molecular cell biology, 21(4), 225-245.
Luo, Q., Zheng, N., Jiang, L., Wang, T., Zhang, P., Liu, Y., Zheng, P., Wang, W., Xie, G., Chen, L., Li, D., Dong, P., Yuan, X., & Shen, L. (2020). Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer. Cancer science, 111(11), 4000–4011. https://doi.org/10.1111/cas.14616
Ma, J., Tanaka, K. F., Shimizu, T., Bernard, C. C., Kakita, A., Takahashi, H., ... & Ikenaka, K. (2011). Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. Journal of neuroscience research, 89(5), 639-649.
Ma, Y., Ren, S., Pandak, W. M., Li, X., Ning, Y., Lu, C., ... & Yin, L. (2007). The effects of inflammatory cytokines on steroidogenic acute regulatory protein expression in macrophages. Inflammation research, 56(12), 495-501.
Marcuzzi, A., Melloni, E., Zauli, G., Romani, A., Secchiero, P., Maximova, N., & Rimondi, E. (2021). Autoinflammatory diseases and cytokine storms—imbalances of innate and adaptative immunity. International Journal of Molecular Sciences, 22(20), 11241.
Marshall, J.S., Warrington, R., Watson, W. et al. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14, 49 (2018). https://doi.org/10.1186/s13223-018-0278-1
Martín-Alonso, M., García-Redondo, A. B., Guo, D., Camafeita, E., Martínez, F., Alfranca, A., ... & Arroyo, A. G. (2015). Deficiency of MMP17/MT4-MMP proteolytic activity predisposes to aortic aneurysm in mice. Circulation research, 117(2), e13-e26.
Masetti, M., Carriero, R., Portale, F., Marelli, G., Morina, N., Pandini, M., Iovino, M., Partini, B., Erreni, M., Ponzetta, A., Magrini, E., Colombo, P., Elefante, G., Colombo, F. S., den Haan, J. M. M., Peano, C., Cibella, J., Termanini, A., Kunderfranco, P., Brummelman, J., … Di Mitri, D. (2022). Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. The Journal of experimental medicine, 219(2), e20210564. https://doi.org/10.1084/jem.20210564
McNab, F., Mayer-Barber, K., Sher, A. et al. Type I interferons in infectious disease. Nat Rev Immunol 15, 87–103 (2015). https://doi.org/10.1038/nri3787
Meylan, E., Tschopp, J., & Karin, M. (2006). Intracellular pattern recognition receptors in the host response. Nature, 442(7098), 39-44.
Min, B., Prout, M., Hu-Li, J., Zhu, J., Jankovic, D., Morgan, E. S., ... & Paul, W. E. (2004). Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. The Journal of experimental medicine, 200(4), 507-517.
Miyamoto H, Suzuki T, Miyauchi Y, Iwasaki R, Kobayashi T, Sato Y, Miyamoto K, Hoshi H, Hashimoto K, Yoshida S, Hao W, Mori T, Kanagawa H, Katsuyama E, Fujie A, Morioka H, Matsumoto M, Chiba K, Takeya M, Toyama Y, Miyamoto T. Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells. J Bone Miner Res. 2012 Jun;27(6):1289-97. doi: 10.1002/jbmr.1575. PMID: 22337159."
Mo, H., Hao, Y., Lv, Y., Chen, Z., Shen, J., Zhou, S., & Yin, M. (2021). Overexpression of macrophage-colony stimulating factor-1 receptor as a prognostic factor for survival in cancer: A systematic review and meta-analysis. Medicine, 100(12), e25218.
Mohammed, A., Okwor, I., Shan, L., Onyilagha, C., Uzonna, J. E., & Gounni, A. S. (2020). Semaphorin 3E regulates the response of macrophages to lipopolysaccharide-induced systemic inflammation. The Journal of Immunology, 204(1), 128-136.
Moll, S., Desmoulière, A., Moeller, M. J., Pache, J. C., Badi, L., Arcadu, F., ... & Prunotto, M. (2019). DDR1 role in fibrosis and its pharmacological targeting. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866(11), 118474.
Muraille, E., Leo, O., & Moser, M. (2014). TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism?. Frontiers in immunology, 5, 603. https://doi.org/10.3389/fimmu.2014.00603
Murphy, K., & Weaver, C. (2016). Janeway's immunobiology. Garland science. Murphy, K., & Weaver, C. (2016). Janeway's immunobiology. Garland science.
Naugler, W. E., & Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Current opinion in genetics & development, 18(1), 19–26. https://doi.org/10.1016/j.gde.2008.01.020 Naugler, W. E., & Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Current opinion in genetics & development, 18(1), 19–26. https://doi.org/10.1016/j.gde.2008.01.020
O’Brien, S. A., Orf, J., Skrzypczynska, K. M., Tan, H., Kim, J., DeVoss, J., ... & Egen, J. G. (2021). Activity of tumor-associated macrophage depletion by CSF1R blockade is highly dependent on the tumor model and timing of treatment. Cancer Immunology, Immunotherapy, 70(8), 2401-2410.
Okuda, H., Kobayashi, A., Xia, B., Watabe, M., Pai, S. K., Hirota, S., ... & Watabe, K. (2012). Hyaluronan Synthase HAS2 Promotes Tumor Progression in Bone by Stimulating the Interaction of Breast Cancer Stem–Like Cells with Macrophages and Stromal CellsHAS2 Promotes Tumor Progression in Bone. Cancer research, 72(2), 537
Oliphant, C. J., Barlow, J. L., & McKenzie, A. N. (2011). Insights into the initiation of type 2 immune responses. Immunology, 134(4), 378-385. Oliphant, C. J., Barlow, J. L., & McKenzie, A. N. (2011). Insights into the initiation of type 2 immune responses. Immunology, 134(4), 378-385.
Omics Technologies and Bio-Engineering. (2018). Elsevier. https://doi.org/10.1016/c2015-0-01634-3
O'Shea, J. J., Gadina, M., & Siegel, R. M. (2019). Cytokines and cytokine receptors. In Clinical immunology (pp. 127-155). Elsevier.
Ostuni, R., Kratochvill, F., Murray, P. J., & Natoli, G. (2015). Macrophages and cancer: from mechanisms to therapeutic implications. Trends in immunology, 36(4), 229-239.
Paniagua, R. T., Chang, A., Mariano, M. M., Stein, E. A., Wang, Q., Lindstrom, T. M., ... & Robinson, W. H. (2010). c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis research & therapy, 12(1),.
Pawlik A, Anisiewicz A, Filip-Psurska B, Nowak M, Turlej E, Trynda J, Banach J, Gretkierewicz P, Wietrzyk J. Calcitriol and Its Analogs Establish the Immunosuppressive Microenvironment That Drives Metastasis in 4T1 Mouse Mammary Gland Cancer. Int J Mol Sci. 2018 Jul 20;19(7):2116. doi: 10.3390/ijms19072116. PMID: 30037009; PMCID: PMC6073894.
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. Adv Physiol Educ. 2013 Dec;37(4):273-83. doi: 10.1152/advan.00066.2013. PMID: 24292902; PMCID: PMC4089090.
Qi, F., Li, J., Guo, M., Yang, B., & Xia, J. (2020). MT4‐MMP in tumor‐associated macrophages is linked to hepatocellular carcinoma aggressiveness and recurrence. Clinical and translational medicine.
Remmerie, A., & Scott, C. L. (2018). Macrophages and lipid metabolism. In Cellular Immunology (Vol. 330, pp. 27–42). Elsevier BV. https://doi.org/10.1016/j.cellimm.2018.01.020
Riabov, V., Gudima, A., Wang, N., Mickley, A., Orekhov, A., & Kzhyshkowska, J. (2014). Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Frontiers in physiology, 5, 75.
Rodríguez, E., Carasi, P., Frigerio, S., Da Costa, V., Van Vliet, S., Noya, V., ... & Freire, T. (2017). Fasciola hepatica immune regulates CD11c+ cells by interacting with the macrophage Gal/GalNAc lectin. Frontiers in Immunology, 8, 264."
Romanelli, M. G., Lorenzi, P., Avesani, F., & Morandi, C. (2007). Functional characterization of the ribonucleoprotein, PTB-binding 1/Raver1 promoter region. Gene, 405(1-2), 79-87.
Rosenberg, H. F. (2008). Eosinophil-derived neurotoxin/RNase 2: connecting the past, the present and the future. Current pharmaceutical biotechnology, 9(3), 135-140."
Rőszer T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of inflammation, 2015, 816460. https://doi.org/10.1155/2015/816460
Sathe, A., Mason, K., Grimes, S. M., Zhou, Z., Lau, B. T., Bai, X., ... & Ji, H. P. (2022). Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor associated SPP1+ macrophages and fibroblasts. bioRxiv, 2020-09.
Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005 Jul;37(7):710-7. doi: 10.1038/ng1589. Epub 2005 Jun 19. PMID: 15965475; PMCID: PMC2841396.
Schmidt, A. M., & Moore, K. J. (2013). The Semaphorin 3E/PlexinD1 axis regulates macrophage inflammation in obesity. Cell metabolism, 18(4), 461-462."
Segade F, Claudio E, Hurlé B, Ramos S, Lazo PS. Differential regulation of the murine ribosomal protein L26 gene in macrophage activation. Life Sci. 1996;58(4):277-85. doi: 10.1016/0024-3205(95)02288-0. PMID: 8538365.
Sica, A., & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. H. Clin Invest. 2012, 122(3), 787-795.
Sica, A., Schioppa, T., Mantovani, A., & Allavena, P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. European journal of cancer, 42(6), 717-727.
Sidorkiewicz, I., Zbucka-Krętowska, M., Zaręba, K., Lubowicka, E., Zajkowska, M., Szmitkowski, M., ... & Ławicki, S. (2019). Plasma levels of M-CSF and VEGF in laboratory diagnostics and differentiation of selected histological types of cervical cancers. BMC cancer, 19(1), 1-12.
Stanford SM, Aleman Muench GR, Bartok B, Sacchetti C, Kiosses WB, Sharma J, Maestre MF, Bottini M, Mustelin T, Boyle DL, Firestein GS, Bottini N. TGFβ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Ann Rheum Dis. 2016 Jan;75(1):295-302. doi: 10.1136/annrheumdis-2014-205790. Epub 2014 Nov 6. PMID: 25378349; PMCID: PMC4422771.
Stefanovic L, Stefanovic B. Role of cytokine receptor-like factor 1 in hepatic stellate cells and fibrosis. World J Hepatol. 2012 Dec 27;4(12):356-64. doi: 10.4254/wjh.v4.i12.356. PMID: 23355913; PMCID: PMC3554799."
Stöger, J. L., Gijbels, M. J., van der Velden, S., Manca, M., van der Loos, C. M., Biessen, E. A., ... & de Winther, M. P. (2012). Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 225(2), 461-468.
Stone JC. Regulation and Function of the RasGRP Family of Ras Activators in Blood Cells. Genes Cancer. 2011 Mar;2(3):320-34. doi: 10.1177/1947601911408082. PMID: 21779502; PMCID: PMC3128638.
Szabo, S. J., Sullivan, B. M., Peng, S. L., & Glimcher, L. H. (2003). Molecular mechanisms regulating Th1 immune responses. Annual review of immunology, 21, 713.
Takata, K., Tanino, M., Ennishi, D., Tari, A., Sato, Y., Okada, H., ... & Yoshino, T. (2014). Duodenal follicular lymphoma: comprehensive gene expression analysis with insights into pathogenesis. Cancer science, 105(5), 608-615.
Tang, P. M. K., Nikolic-Paterson, D. J., & Lan, H. Y. (2019). Macrophages: versatile players in renal inflammation and fibrosis. Nature Reviews Nephrology, 15(3), 144-158.
Taylor, J.M.W.; Borthwick, F.; Bartholomew, C.; Graham, A. Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc. Res. 2010.
Tiainen, S., Tumelius, R., Rilla, K., Hämäläinen, K., Tammi, M., Tammi, R., ... & Auvinen, P. (2015). High numbers of macrophages, especially M2‐like (CD 163‐positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology, 66(6)
Trouw, L. A., & Daha, M. R. (2011). Role of complement in innate immunity and host defense. Immunology letters, 138(1), 35-37. Trouw, L. A., & Daha, M. R. (2011). Role of complement in innate immunity and host defense. Immunology letters, 138(1), 35-37.
Tsukamoto, K., Kinoshita, M., Kojima, K., Mikuni, Y., Kudo, M., Mori, M., ... & Teramoto, T. (2002). Synergically increased expression of CD36, CLA-1 and CD68, but not of SR-A and LOX-1, with the progression to foam cells from macrophages. Journal of atherosclerosis and thrombosis, 9(1), 57-64.
Ushach, I., & Zlotnik, A. (2016). Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. Journal of leukocyte biology, 100(3), 481–489. https://doi.org/10.1189/jlb.3RU0316-144R
Van den Bossche J, Malissen B, Mantovani A, De Baetselier P, Van Ginderachter JA. Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood. 2012 Feb 16;119(7):1623-33. doi: 10.1182/blood-2011-10-384289. Epub 2011 Dec 15. PMID: 22174153."
Van den Bossche, J. (2020). Lipid-laden macrophages cross the border to cancer. Immunometabolism, 2(1). Van den Bossche, J. (2020). Lipid-laden macrophages cross the border to cancer. Immunometabolism, 2(1).
van Eijk, M., & Aerts, J. M. F. G. (2021). The Unique Phenotype of Lipid-Laden Macrophages. International journal of molecular sciences, 22(8), 4039. https://doi.org/10.3390/ijms22084039 van Eijk, M., & Aerts, J. M. F. G. (2021). The Unique Phenotype of Lipid-Laden Macrophages. International journal of molecular sciences, 22(8), 4039. https://doi.org/10.3390/ijms22084039
Varghese, J. F., Patel, R., & Yadav, U. C. (2019). Sterol regulatory element binding protein (SREBP)-1 mediates oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation through NLRP3 inflammasome activation. Cellular signalling, 53, 316-326.
Wang Q, Liu J, Hu Y, Pan T, Xu Y, Yu J, Xiong W, Zhou Q, Wang Y. Local administration of liposomal-based Srpx2 gene therapy reverses pulmonary fibrosis by blockading fibroblast-to-myofibroblast transition. Theranostics. 2021 May 13;11(14):7110-7125. doi: 10.7150/thno.61085. Erratum in: Theranostics. 2022 Jul 8;12(12):5330-5331. PMID: 34093874; PMCID: PMC8171094.
Wang, L., Zhang, Z., Zhou, X., Wu, J., & Hong, Z. (2022). Comprehensive analysis of the expression and prognosis of YPEL family members in clear cell renal cell cancer. Oncology Reports, 48(1), 1-12.
Wanschel, A., Seibert, T., Hewing, B., Ramkhelawon, B., Ray, T. D., van Gils, J. M., ... & Moore, K. J. (2013). Neuroimmune guidance cue Semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arteriosclerosis, thrombosis, and vascular biology, 33(5), 886-893.
Warrington, R., Watson, W., Kim, H. L., & Antonetti, F. R. (2011). An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology, 7(1), 1-8.
Weiler J, Mohr M, Zänker KS, Dittmar T. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Cell Commun Signal. 2018 Apr 10;16(1):14. doi: 10.1186/s12964-018-0226-1. PMID: 29636110; PMCID: PMC5894245."
Williams, C. B., Yeh, E. S., & Soloff, A. C. (2016). Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ breast cancer, 2(1), 1-12.
Wonglapsuwan, M., Kongmee, P., Suanyuk, N., & Chotigeat, W. (2016). Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio. Developmental & Comparative Immunology, 59, 25-33."
Wu, H., Han, Y., Rodriguez Sillke, Y., Deng, H., Siddiqui, S., Treese, C., Schmidt, F., Friedrich, M., Keye, J., Wan, J., Qin, Y., Kühl, A. A., Qin, Z., Siegmund, B., & Glauben, R. (2019). Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO molecular medicine, 11(11), e10698. https://doi.org/10.15252/emmm.201910698
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013 Apr 25;496(7446):445-55. doi: 10.1038/nature12034. PMID: 23619691; PMCID: PMC3725458.
Xia, W., Li, Y., Wu, M., Yin, J., Zhang, Y., Chen, H., ... & Zhang, A. (2019). Inhibition of mitochondrial activity ameliorates atherosclerosis in ApoE−/− mice via suppressing vascular smooth cell activation and macrophage foam cell formation. Journal of Cellular Biochemistry, 120(10), 17767-17778.
Xiao, C., Wang, Y., & Cao, C. (2021). Increased Expression of MMP17 Predicts Poor Clinical Outcomes in Epithelial Ovarian Cancer Patients.
Yamada, K. J., Barker, T., Dyer, K. D., Rice, T. A., Percopo, C. M., Garcia-Crespo, K. E., ... & Rosenberg, H. F. (2015). Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. Journal of Biological Chemistry, 290(14), 8863-8875.
Yang, Q., Guo, N., Zhou, Y., Chen, J., Wei, Q., & Han, M. (2020). The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharmaceutica Sinica B.
Yeh, Y. C., Lin, H. H., & Tang, M. J. (2019). Dichotomy of the function of DDR1 in cells and disease progression. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866(11), 118473."
Yuan, H., He, J., Zhang, G., Zhang, D., Kong, X., & Chen, F. (2017). Osteoclast stimulatory transmembrane protein induces a phenotypic switch in macrophage polarization suppressing an M1 pro-inflammatory state. Acta Biochimica et Biophysica Sinica, 49(10), 935-944.
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020 Jun 15;877:173090. doi: 10.1016/j.ejphar.2020.173090. Epub 2020 Mar 29. PMID: 32234529. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020 Jun 15;877:173090. doi: 10.1016/j.ejphar.2020.173090. Epub 2020 Mar 29.
Zhang, J. M., & An, J. (2007). Cytokines, inflammation and pain. International anesthesiology clinics, 45(2), 27.
Zhang, L., Li, L., Mao, Y., & Hua, D. (2020). VGLL3 is a prognostic biomarker and correlated with clinical pathologic features and immune infiltrates in stomach adenocarcinoma. Scientific Reports, 10(1),
Zhang, L., Li, Z., Skrzypczynska, K. M., Fang, Q., Zhang, W., O’Brien, S. A., ... & Yu, X. (2020). Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell, 181(2), 442-459.
Zhang, X., McDonald, J. G., Aryal, B., Canfrán-Duque, A., Goldberg, E. L., Araldi, E., Ding, W., Fan, Y., Thompson, B. M., Singh, A. K., Li, Q., Tellides, G., Ordovás-Montanes, J., García Milian, R., Dixit, V. D., Ikonen, E., Suárez, Y., & Fernández-Hernando, C. (2021). Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 118(47), e2107682118. https://doi.org/10.1073/pnas.2107682118
Zhao, R., Peng, C., Song, C., Zhao, Q., Rong, J., Wang, H., ... & Xie, Y. (2020). BICC1 as a novel prognostic biomarker in gastric cancer correlating with immune infiltrates. International Immunopharmacology, 87, 106828.
Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014 Sep 15;74(18):5057-69. doi: 10.1158/0008-5472.CAN-13-3723. Epub 2014 Jul 31. PMID: 25082815; PMCID: PMC4182950.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊