跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇椀晶
研究生(外文):Su, Wan-Ching
論文名稱:香檬皮經不同方式萃取後其消化酵素及糖化終產物之抑制能力
論文名稱(外文):Inhibition of Digestive Enzymes and Advanced Glycation End Products by Citrus depressa Hayata Peel Extract Prepared by Different Methods
指導教授:蔡碧仁
指導教授(外文):Tsai, Pi-Jen
口試委員:翁義銘陳與國蔡碧仁
口試委員(外文):Weng, Yih-MingChen, Yu-KuoTsai, Pi-Jen
口試日期:2023-07-04
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:83
中文關鍵詞:香檬消化酵素糖化終產物高壓靜電場
外文關鍵詞:Citrus depressa Hayatadigestive enzymesadvanced glycation end productshigh-voltage electrostatic field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代人生活習慣的改變,肥胖已成為全球重要的公衛議題。消化酵素的作用造成多餘的熱量被吸收,而體內的血糖與蛋白結合導致糖化終產物 (Advanced glycation end products, AGEs) 的攝入增加,許多研究顯示糖化終產物與人體的老化及慢性疾病息息相關,因此如何抑制其生成是十分重要的議題。香檬(Citrus depressa Hayata)是一種柑橘水果,文獻指出其具有抗氧化、抗炎、抗癌、抗肥胖、抗高血糖、神經保護等特性,本研究使用果汁加工中剩餘的香檬皮副產物,並比較超音波、酵素水解、高壓靜電場三種萃取方式的樣品其抑制消化酵素及抑制糖化終產物生成能力。實驗結果顯示,A 溶劑樣品在脂肪酶活性及糖化終產物生成能力方面皆有 80%以上的抑制率,因此作為後續實驗的最佳萃取方式;三種萃取方式中,總酚及總類黃酮含量以酵素水解之樣品最高,分別約 2500 mgGAE/100 g 及 400 mgQE/100 g;FRAP 三價鐵還原能力約為 1600 μmol /L,三者沒有顯著差異。DPPH 自由基清除率結果超音波樣品與高壓靜電場樣品間未有顯著差異,兩者略高於酵素水解樣品。三種萃取方式的脂肪酶抑制能力皆有不錯的效果,抑制率約 89~91%間,抗糖化能力則是高壓靜電場及酵素水解效果較好,約在 87~91%間。此外,進一步分析三種樣品中之酚類化合物組成,含量較多的酚酸為七葉樹(Esculetin)、
3,4-二羥基苯甲酸 (3,4-dihydroxybenzoic acid) 及兒茶素 (Catechin),類黃酮則是川陳皮素 (Nobiletin) 及橙皮苷 (Hesperidin) 為主。綜合以上結果,因此認為高壓靜電場對於萃取香檬皮內的抑制消化酵素成分和提升抗糖化能力是有幫助的。
With the change of modern people's lifestyle, obesity has become an important public health issue worldwide. The action of digestive enzymes leads to the absorption of excess calories, and the binding of blood sugar with protein in the body causes an increase about the intake of advanced glycation end products (AGEs). Many studies have shown that AGEs are closely related to human body aging and chronic diseases, therefore, it’s an important issue for how to inhibit the production of AGEs. Citrus depressa Hayata is a type of citrus fruit, which has been reported in some literature to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-hyperglycemic, neuroprotective and other properties. In this study, Citrus depressa Hayata peel by-products from fruit juice processing were used, and three extraction methods, such as ultrasonic, enzyme hydrolysis, and high-voltage electrostatic field (HVEF) were used to compare the ability to inhibit digestive enzymes and the formation of AGEs. The results of the experiments showed that the A-extracted sample has an inhibition rate more than 80% in terms of lipase activity and the ability of AGEs generation, so it is considered as the best extraction solvent for further experiments. Among the three extraction methods, the content of total phenols and total flavonoids were found highest in the sample of enzymatic hydrolysis (approximately 2500 mgGAE/100 g and 400 mgQE/100 g, respectively). For the ferric reducing antioxidant power (FRAP, about 1600 μmol/L
approximately), there is no significant differences among the three different
extracted samples. For the DPPH free radical scavenging activity, it turned out
that there's no significant difference between the samples extracted through
ultrasonic and HVEF, whereas both of them showed slightly higher value than
the enzyme hydrolysis sample. All extraction methods showed good results on
the lipase inhibition ability,with inhibition rate about 89-91%; for anti-glycation ability, it were better in samples extracted through HVEF and enzyme hydrolysis, for about 87-91%. In addition, the composition of phenolic compounds in the three samples was further analyzed by HPLC. The most abundant phenolic acids were esculetin, 3,4-dihydroxybenzoic acid and catechin, and the flavonoids were mainly nobiletin and hesperidin. Based on the above results, it is considered that the HVEF is helpful for extracting the components which could inhibit digestive enzymes and improve the antiglycation ability in the Citrus depressa Hayata peel
目錄
摘要 I
Abstract II
謝誌 IV
第1章 前言 1
第2章 文獻回顧 2
2.1 柑橘類水果 2
2.2 香檬 (Citrus depressa Hayata) 2
2.2.1 香檬簡介 2
2.2.2 香檬主要機能成分 4
2.3 植物體中抗氧化成分 4
2.3.1 酚酸 4
2.3.2 類黃酮 (Flvonoid) 5
2.4 人體中的消化酵素 15
2.4.1 脂肪酶 (Lipase) 15
2.4.2 α-澱粉酶 (α-Amylase) 17
2.4.3 α-葡萄糖苷酶 (α-Glucosidase) 17
2.5 糖化終產物(Advanced glycation end products, AGEs) 19
2.6 高壓靜電場(High voltage electrostatic field, HVEF) 19
第3章 材料與方法 23
3.1 實驗原料 23
3.2 試驗藥品 23
3.3 實驗設備 24
3.4 實驗架構 25
3.5 實驗方法 29
3.5.1 抗醣化能力測定 29
2.5.2 抑制消化酵素活性測定 29
3.5.3 抗氧化成分分析 31
3.5.4 抗氧化能力分析 34
3.5.5 統計分析 35
第4章 結果與討論 37
4.1 最佳萃取溶劑 37
4.1.1 不同溶劑萃取對抑制脂肪酶活性能力分析 37
4.1.2 不同溶劑萃取對抑制糖化終產物(AGEs)生成之影響 39
4.2 最適萃取比例 41
4.2.1 不同萃取比例對抑制脂肪酶活性能力分析 41
4.2.2 不同萃取比例對抑制糖化終產物生成能力分析 41
4.3高壓靜電場最適萃取條件 45
4.3.1 不同電場強度及萃取時間對抑制脂肪酶活性能力分析 45
4.3.2 不同電場強度及萃取時間對抑制糖化終產物生成能力分析 45
4.4不同萃取方式比較 50
4.4.1 比較不同萃取方法對香檬皮總酚及總類黃酮的含量影響 50
4.4.2 比較不同萃取方法對香檬皮酚類化合物含量的影響 52
4.4.3 不同萃取方法對香檬皮抗氧化能力的影響 56
4.4.4 不同萃取方法對香檬皮抑制消化酵素能力的影響 59
4.4.5 不同萃取方法對香檬皮抑制糖化終產物(AGEs)生成之影響 62
4.4.6 相關性分析 65
4.4.7 主成分分析 69
第5章 結論 73
第6章 參考文獻 74
李頴宏, & 邱慈緯. (2021). 臺灣香檬產業發展及加值利用. 高雄區農業專
訊, 116, 6–9.
蔡秉昌. (99). 台灣香檬果皮活性成分之研究=: Studies on the Bioactive
Components of Peel of Citrus depressa Hayata. 國立屏東科技大學生
物科技研究所.
Abdou, H. M., Hamaad, F. A., Ali, E. Y., & Ghoneum, M. H. (2022).
Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and
quercetin in ameliorating carbohydrate metabolism and activating IR and
AMPK signaling in the pancreatic tissues of diabetic rats. Biomedicine
& Pharmacotherapy, 149, 112838.
Abenoza, M., Benito, M., Saldaña, G., Á lvarez, I., Raso, J., & Sánchez-Gimeno,
A. C. (2013). Effects of pulsed electric field on yield extraction and
quality of olive oil. Food and Bioprocess Technology, 6(6), 1367–1373.
Al Jitan, S., Alkhoori, S. A., & Yousef, L. F. (2018). Phenolic acids from plants:
extraction and application to human health. In Studies in Natural
Products Chemistry (Vol. 58, pp. 389–417). Elsevier.
Asikin, Y., Taira, I., Inafuku, S., Sumi, H., Sawamura, M., Takara, K., & Wada,
K. (2012). Volatile aroma components and antioxidant activities of the
flavedo peel extract of unripe shiikuwasha (Citrus depressa Hayata).
Journal of Food Science, 77(4), C469–C475. \
allistreri, G., Fabroni, S., Romeo, F. V., Timpanaro, N., Amenta, M., &
Rapisarda, P. (2019). Anthocyanins and other polyphenols in citrus genus:
Biosynthesis, chemical profile, and biological activity. In Polyphenols in
Plants (pp. 191–215). Elsevier.
Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green
alternative methods for the extraction of antioxidant bioactive
compounds from winery wastes and by-products: A review. Trends in
Food Science & Technology, 49, 96–109.
Barreca, D., Gattuso, G., Bellocco, E., Calderaro, A., Trombetta, D., Smeriglio,
A., Laganà, G., Daglia, M., Meneghini, S., & Nabavi, S. M. (2017).
75
Flavanones: Citrus phytochemical with health-promoting properties.
Biofactors, 43(4), 495–506.
Benayad, O., Bouhrim, M., Tiji, S., Kharchoufa, L., Addi, M., Drouet, S., Hano,
C., Lorenzo, J. M., Bendaha, H., Bnouham, M., & Mimouni, M. (2021).
Phytochemical profile, α-Glucosidase, and α-Amylase inhibition
potential and toxicity evaluation of extracts from Citrus aurantium (L)
Peel, a valuable by-product from Northeastern Morocco. Biomolecules,
11(11), Article 11.
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma
(FRAP) as a measure of “antioxidant power”: The FRAP Assay.
Analytical Biochemistry, 239(1), 70–76.
Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P., & Cerami, A. (1986).
Aminoguanidine prevents diabetes-induced arterial wall protein crosslinking. Science, 232(4758), 1629–1632. Scopus.
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structureantioxidant activity relationship of methoxy, phenolic hydroxyl, and
carboxylic acid groups of phenolic acids. Scientific Reports, 10(1),
Article 1.
Chien, W.-J., Saputri, D. S., & Lin, H.-Y. (2022). Valorization of Taiwan’s
Citrus depressa Hayata peels as a source of nobiletin and tangeretin using
simple ultrasonic-assisted extraction. Current Research in Food Science,
5, 278–287.
Choi, I. S., Lee, Y. G., Khanal, S. K., Park, B. J., & Bae, H.-J. (2015). A lowenergy, cost-effective approach to fruit and citrus peel waste processing
for bioethanol production. Applied Energy, 140, 65–74.
Dalvi-Isfahan, M., Hamdami, N., Le-Bail, A., & Xanthakis, E. (2016). The
principles of high voltage electric field and its application in food
processing: A review. Food Research International, 89, 48–62.
Dan, W.-J., Zhang, Q., Zhang, F., Wang, W.-W., & Gao, J.-M. (2019).
Benzonate derivatives of acetophenone as potent α-glucosidase
inhibitors: Synthesis, structure–activity relationship and mechanism.
Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 937–945.
Daud, M. N. H., Fatanah, D. N., Abdullah, N., & Ahmad, R. (2017). Evaluation
of antioxidant potential of Artocarpus heterophyllus L. J33 variety fruit
waste from different extraction methods and identification of phenolic
constituents by LCMS. Food Chemistry, 232, 621–632.
Dias, D. T. M., Palermo, K. R., Motta, B. P., Kaga, A. K., Lima, T. F. O.,
Brunetti, I. L., & Baviera, A. M. (2021). Rutin inhibits the in vitro
formation of advanced glycation products and protein oxidation more
efficiently than quercetin. Revista de Ciências Farmacêuticas Básica e
Aplicada, 42, 1–13.
Dixon, R. A., & Steele, C. L. (1999). Flavonoids and isoflavonoids –gold mine
for metabolic engineering. Trends in Plant Science, 4(10), 394–400.
Ferreira, V. J., Arnal, Á . J., Royo, P., García-Armingol, T., López-Sabirón, A.
M., & Ferreira, G. (2019). Energy and resource efficiency of
electroporation-assisted extraction as an emerging technology towards a
sustainable bio-economy in the agri-food sector. Journal of Cleaner
Production, 233, 1123–1132.
Ferruzzi, M. G., Bordenave, N., & Hamaker, B. R. (2012). Does flavor impact
function? Potential consequences of polyphenol–protein interactions in
delivery and bioactivity of flavan-3-ols from foods. Physiology &
Behavior, 107(4), 591–597.
Gattuso, A., Piscopo, A., Romeo, R., De Bruno, A., Poiana, M. (2023).
Recovery of bioactive compounds from calabrian bergamot citrus waste:
Selection of best green extraction. Agriculture, 13(5).
Gedikoğlu, A., Clarke, A. D., & Gruen, I. (2018). Determination of Flavonoids
in Citrus fiber and the impact of processing method on total phenolic
content, total flavonoid content, total carotenoid content and oxygen
radical absorbance capacity: GIDA / The Journal of FOOD, 43(6), 917–
924.
Gomes, J. H. de S., Mbiakop, U. C., Oliveira, R. L., Stehmann, J. R., Pádua, R.
M. de, Cortes, S. F., & Braga, F. C. (2021). Polyphenol-rich extract and
fractions of Terminalia phaeocarpa Eichler possess hypoglycemic effect,
reduce the release of cytokines, and inhibit lipase, α-glucosidase, and αamilase enzymes. Journal of Ethnopharmacology, 271, 113847.
77
González, I., Morales, M. A., & Rojas, A. (2020). Polyphenols and
AGEs/RAGE axis. Trends and challenges. Food Research International,
129, 108843.
Grimi, N., Mamouni, F., Lebovka, N., Vorobiev, E., & Vaxelaire, J. (2011).
Impact of apple processing modes on extracted juice quality: Pressing
assisted by pulsed electric fields. Journal of Food Engineering, 103(1),
52–61.
Gülçin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic
acid). Toxicology, 217(2–3), 213–220.
Hao, K., Hu, W., Hou, M., Cao, D., Wang, Y., Guan, Q., Zhang, X., Wang, A.,
Yu, J., & Guo, B. (2019). Optimization of ultrasonic-assisted extraction
of total phenolics from Citrus aurantium L. Blossoms and evaluation of
free radical scavenging, anti-HMG-CoA reductase activities. Molecules,
24(13), Article 13.
Ho, K. L., Ng, Z. X., Wang, C. W., Mat Junit, S., Huah Lim, S., Ngo, C. T.,
Yong, A. C. H., & Yong, P. H. (2022). Comparative analysis of in vitro
enzyme inhibitory activities and phytochemicals from Platycladus
orientalis (L.) Franco via solvent partitioning method. Applied
Biochemistry and Biotechnology, 194(8), 3621–3644.
Huang, H.-S., Yu, H.-S., Yen, C.-H., & Liaw, E.-T. (2019). HPLC-DAD-ESIMS Analysis for simultaneous quantitation of phenolics in Taiwan
elderberry and its anti-glycation activity. Molecules, 24(21), Article 21.
Huang, X., Zhu, J., Wang, L., Jing, H., Ma, C., Kou, X., & Wang, H. (2020).
Inhibitory mechanisms and interaction of tangeretin, 5-
demethyltangeretin, nobiletin, and 5-demethylnobiletin from citrus peels
on pancreatic lipase: Kinetics, spectroscopies, and molecular dynamics
simulation. International Journal of Biological Macromolecules, 164,
1927–1938.
Jaganath, I. B., & Crozier, A. (2009). Dietary flavonoids and phenolic
compounds. In plant phenolics and human health (pp. 1–49). John
Wiley & Sons, Ltd.
Koubaa, M., Roselló-Soto, E., Šic Žlabur, J., Režek Jambrak, A., Brnčić, M.,
Grimi, N., Boussetta, N., & Barba, F. J. (2015). Current and new insights
78
in the sustainable and green recovery of nutritionally valuable
compounds from stevia rebaudiana bertoni. Journal of Agricultural and
Food Chemistry, 63(31), 6835–6846.
Lee, Y.-S., Cha, B.-Y., Saito, K., Choi, S.-S., Wang, X. X., Choi, B.-K.,
Yonezawa, T., Teruya, T., Nagai, K., & Woo, J.-T. (2011). Effects of a
Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat dietinduced obese mice. Phytomedicine, 18(8–9), 648–654.
Li, D., Mitsuhashi, S., & Ubukata, M. (2012). Protective effects of hesperidin
derivatives and their stereoisomers against advanced glycation endproducts formation. Pharmaceutical Biology, 50(12), 1531–1535.
Lin, C.-Y., Chen, P.-Y., Hsu, H.-J., Gao, W.-Y., Wu, M.-J., & Yen, J.-H. (2022).
The citrus flavonoid nobiletin downregulates angiopoietin-like protein 3
(ANGPTL3) expression and exhibits lipid-modulating effects in hepatic
cells and adult zebrafish models. International Journal of Molecular
Sciences, 23(20), Article 20.
Liu, T.-T., Liu, X.-T., Chen, Q.-X., & Shi, Y. (2020). Lipase inhibitors for
obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314.
Liu, X., Luo, F., Li, P., She, Y., & Gao, W. (2017). Investigation of the
interaction for three citrus flavonoids and α-amylase by surface plasmon
resonance. Food Research International, 97, 1–6.
Lu, S.-Y., Chu, Y.-L., Sridhar, K., & Tsai, P.-J. (2021). Effect of ultrasound,
high-pressure processing, and enzymatic hydrolysis on carbohydrate
hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon)
flavedo. LWT, 138, 110511.
Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., Xiao, C., Lu, C., & Liu,
Y. (2015). Citrus fruits as a treasure trove of active natural metabolites
that potentially provide benefits for human health. Chemistry Central
Journal, 9(1), 68.
Ma, Y.-Q., Chen, J.-C., Liu, D.-H., & Ye, X.-Q. (2009). Simultaneous
extraction of phenolic compounds of citrus peel extracts: Effect of
ultrasound. Ultrasonics Sonochemistry, 16(1), 57–62.
Mahmood, N. (2016). A review of α-amylase inhibitors on weight loss and
glycemic control in pathological state such as obesity and diabetes.
Comparative Clinical Pathology, 25(6), 1253–1264.
Manaharan, T., Palanisamy, U. D., & Ming, C. H. (2012). Tropical plant
extracts as potential antihyperglycemic agents. Molecules, 17(5), Article
5.
Matsuzaki, K., Nakajima, A., Guo, Y., & Ohizumi, Y. (2022). A narrative
review of the effects of citrus Peels and extracts on human brain health
and metabolism. Nutrients, 14(9).
Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O., &
Khodir, M. (2015). Comparison of microwave, ultrasound and
accelerated-assisted solvent extraction for recovery of polyphenols from
Citrus sinensis peels. Food Chemistry, 187, 507–516.
Nguyen, T. M. C., Gavahian, M., & Tsai, P.-J. (2021). Effects of ultrasoundassisted extraction (UAE), high voltage electric field (HVEF), high
pressure processing (HPP), and combined methods (HVEF+UAE and
HPP+UAE) on Gac leaves extraction. LWT, 143, 111131.
Padwal, R. S., & Majumdar, S. R. (2007). Drug treatments for obesity: Orlistat,
sibutramine, and rimonabant. The Lancet, 369(9555), 71–77.
Pande, A., Mundkur, L., Pande, A., Bani, S., & Majeed, M. (2021).
Antiglycation potential of commercial available extracts of two Indian
medicinal plants: Pterocarpus marsupium and Artocarpus lakoocha
using advanced glycation end products (AGE) competitive fluorescence
assay. Cogent Food & Agriculture, 7(1), 1914907.
Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng,
J. (2021). Fruit, vegetables, and mushrooms for the preparation of
extracts with α-amylase and α-glucosidase inhibition properties: A
review. Food Chemistry, 338, 128119.
Pasandide, B., Khodaiyan, F., Mousavi, Z. E., & Hosseini, S. S. (2017).
Optimization of aqueous pectin extraction from citrus medica peel.
Carbohydrate Polymers, 178, 27–33.
Peyroux, J., & Sternberg, M. (2006). Advanced glycation endproducts (AGEs):
80
Pharmacological inhibition in diabetes. Pathologie Biologie, 54(7), 405–
419.
John Wiley & Sons, Ltd. (2009). Plant Phenolics and Human Health (1st ed.).
Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bügel, S.,
Nielsen, J., Skibsted, L. H., & Dragsted, L. O. (2013). Advanced
glycation endproducts in food and their effects on health. Food and
Chemical Toxicology, 60, 10–37.
Proestos, C., & Komaitis, M. (2009). Antioxidant capacity of hops. In Beer in
Health and Disease Prevention (pp. 467–474). Elsevier.
Puértolas, E., Koubaa, M., & Barba, F. J. (2016). An overview of the impact of
electrotechnologies for the recovery of oil and high-value compounds
from vegetable oil industry: Energy and economic cost implications.
Food Research International, 80, 19–26.
Pyrzynska, K. (2022). Hesperidin: A review on extraction methods, stability
and biological activities. Nutrients, 14(12).
Qi, M., Liu, Q., Liu, Y., Yan, H., Zhang, Y., & Yuan, Y. (2022). Staphylococcus
aureus biofilm inhibition by high voltage prick electrostatic field
(HVPEF) and the mechanism investigation. International Journal of
Food Microbiology, 362, 109499.
Qurrat-ul-Ain, Ashiq, U., Jamal, R. A., Saleem, M., & Mahroof-Tahir, M.
(2017). Alpha-glucosidase and carbonic anhydrase inhibition studies of
Pd(II)-hydrazide complexes. Arabian Journal of Chemistry, 10(4), 488–
499.
Rao, M. J., Wu, S., Duan, M., & Wang, L. (2021). Antioxidant metabolites in
primitive, wild, and cultivated citrus and their role in stress tolerance.
Molecules, 26(19), Article 19.
R, D., K B, A., V M, N., Ratheesh, S., Nisha, P., Kumar, T., & Murthy, J. (2015).
Preconditioning L6 muscle cells with naringin ameliorates oxidative
stress and increases glucose uptake. PloS One, 10.
Roselló-Soto, E., Barba, F. J., Parniakov, O., Galanakis, C. M., Lebovka, N.,
81
Grimi, N., & Vorobiev, E. (2015). High voltage electrical discharges,
pulsed electric field, and ultrasound assisted extraction of protein and
phenolic compounds from olive kernel. Food and Bioprocess Technology,
8(4), 885–894.
Ross, K. A., Godfrey, D., & Fukumoto, L. (2015). The chemical composition,
antioxidant activity and α-glucosidase inhibitory activity of waterextractable polysaccharide conjugates from northern Manitoba
lingonberry. Cogent Food & Agriculture, 1(1), 1109781.
Sack, M., & Mueller, G. (2016). Scaled design of PEF treatment reactors for
electroporation-assisted extraction processes. Innovative Food Science
& Emerging Technologies, 37, 400–406.
Saura-Calixto, F., & Díaz-Rubio, M. E. (2007). Polyphenols associated with
dietary fibre in wine: A wine polyphenols gap? Food Research
International, 40(5), 613–619.
Séro, L., Sanguinet, L., Blanchard, P., Dang, B. T., Morel, S., Richomme, P.,
Séraphin, D., & Derbré, S. (2013). Tuning a 96-well microtiter plate
fluorescence-based assay to identify AGE inhibitors in crude plant
extracts. Molecules, 18(11), Article 11.
Shen, W., Xu, Y., & Lu, Y.-H. (2012). Inhibitory effects of citrus flavonoids on
starch digestion and antihyperglycemic effects in HepG2 cells. Journal
of Agricultural and Food Chemistry, 60(38), 9609–9619.
Shin, K.-S., & Lee, J.-H. (2021). Optimization of enzymatic hydrolysis of
immature citrus (Citrus unshiu Marcov.) for flavonoid content and
antioxidant activity using a response surface methodology. Food Science
and Biotechnology, 30(5), 663–673.
Siquet, C., Paiva-Martins, F., Lima, J. L. F. C., Reis, S., & Borges, F. (2006).
Antioxidant profile of dihydroxy- and trihydroxyphenolic acids—A
structure-activity relationship study. Free Radical Research, 40(4), 433–
442.
Spínola, V., & Castilho, P. C. (2017). Evaluation of Asteraceae herbal extracts
in the management of diabetes and obesity. Contribution of
caffeoylquinic acids on the inhibition of digestive enzymes activity and
formation of advanced glycation end-products (in vitro). Phytochemistry,
82
143, 29–35.
Takasawa, R., Takahashi, S., Saeki, K., Sunaga, S., Yoshimori, A., & Tanuma,
S. (2008). Structure–activity relationship of human GLO I inhibitory
natural flavonoids and their growth inhibitory effects. Bioorganic &
Medicinal Chemistry, 16(7), 3969–3975.
Upadhyay, A., Tuenter, E., Amin, A., Exarchou, V., Hermans, N., Apers, S., &
Pieters, L. (2014). 5-O-Demethylnobiletin, a polymethoxylated
flavonoid, from Citrus depressa Hayata peel prevents protein glycation.
Journal of Functional Foods, 11, 243–249.
van Dongen, K. C. W., Linkens, A. M. A., Wetzels, S. M. W., Wouters, K.,
Vanmierlo, T., van de Waarenburg, M. P. H., Scheijen, J. L. J. M., de Vos,
W. M., Belzer, C., & Schalkwijk, C. G. (2021). Dietary advanced
glycation endproducts (AGEs) increase their concentration in plasma and
tissues, result in inflammation and modulate gut microbial composition
in mice; evidence for reversibility. Food Research International, 147,
110547.
Wang, R., Wang, L., Zhang, L., Wan, S., Li, C., & Liu, S. (2022). Solvents
effect on phenolics, iridoids, antioxidant activity, antibacterial activity,
and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.)
fruit extract. Food Chemistry, 377, 131989.
Wang, S., Li, Y., Huang, D., Chen, S., Xia, Y., & Zhu, S. (2022). The inhibitory
mechanism of chlorogenic acid and its acylated derivatives on α-amylase
and α-glucosidase. Food Chemistry, 372, 131334.
Wei, M., Tang, M., Wang, L., Cheng, X., Wu, Y., & Ouyang, J. (2021).
Endogenous bioactive compounds of naked oats (Avena nuda L.) inhibit
α-amylase and α-glucosidase activity. LWT, 149, 111902.
Weinert, R. L., Knabben, M. A., Pereira, E. M., Garcia, C. E., & Ramos, A.
(2021). Dynamic electroporation model evaluation on rabbit tissues.
Annals of Biomedical Engineering, 49(9), 2503–2512.
Wongsa, P., Chaiwarit, J., & Zamaludien, A. (2012). In vitro screening of
phenolic compounds, potential inhibition against α-amylase and αglucosidase of culinary herbs in Thailand. Food Chemistry, 131(3), 964–
971.
83
Zhang, M., Zhu, S., Ho, C.-T., & Huang, Q. (2021). Citrus
polymethoxyflavones as regulators of metabolic homoeostasis: Recent
advances for possible mechanisms. Trends in Food Science &
Technology, 110, 743–753.
Zhang, Z., Kong, F., Ni, H., Mo, Z., Wan, J.-B., Hua, D., & Yan, C. (2016).
Structural characterization, α-glucosidase inhibitory and DPPH
scavenging activities of polysaccharides from guava. Carbohydrate
Polymers, 144, 106–114.
Zheng, Y., Tian, J., Yang, W., Chen, S., Liu, D., Fang, H., Zhang, H., & Ye, X.
(2020). Inhibition mechanism of ferulic acid against α-amylase and αglucosidase. Food Chemistry, 317, 126346.
Zhu, Y., Zhang, M., Law, C. L., Wang, Y., & Liu, K. (2023). Optimization of
ultrasonic-assisted enzymatic hydrolysis to extract soluble substances
from edible fungi by-products. Food and Bioprocess Technology, 16(1),
167–184.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top