跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂欣芸
研究生(外文):Sin-Yun Lu
論文名稱:應用於干涉式光纖陀螺儀之矽光子驅動模組的實現與分析
論文名稱(外文):Implementation and analysis of silicon photonics driving module for interferometric fiber optics gyroscope
指導教授:洪勇智
指導教授(外文):Hung , Yung - Jr
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:103
中文關鍵詞:干涉式光纖陀螺儀矽光子陣列光纖極化分歧器相位調變器
外文關鍵詞:interferometric fiber optics gyroscopesilicon photonicsfiber arraypolarization beam splitterphase modulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用矽光子技術整合干涉式光纖陀螺儀系統中除了光源和光纖環以外元件於單一晶片,並開發光纖引出封裝技術,探討此陀螺系統中極化純化、系統損耗、系統微縮及並聯負載阻抗等不同參數的陀螺特性與分析。
為了達成有效率且穩定的光信號輸出輸入,本論文開發陣列光纖封裝技術,利用與陣列光纖的包覆層折射率和SOI平台折射率(nSiO2=1.44)較為相近的UV膠(nUV glue =1.46)進行點膠固化後,後利用電木材質的外殼封裝在電路板上,用以降低電訊號造成干擾,系統封裝後能有效降低陀螺儀系統損耗約0.35 dB。
在極化純化陀螺儀系統設計上,主要串接五個定向極化分岐器純化TE極化並保留高速量測時需與機台負載阻抗匹配的相位調變器PN電極接面處50 Ω阻抗,其單趟陀螺系統損耗為 -46.8 dB、極化消光比為62 dB、隨機角度遊走為0.0653 deg/√hr且偏壓不穩定性約為1 deg/hr。
在微縮尺寸陀螺儀系統設計上,改為串接兩個定向極化分岐器用以降的系統損耗以及減低陀螺儀系統整體面積,將長直波導相位調變器更改彎曲波導相位調變器,並將相位調變器在PN接面處串接的50 Ω阻抗拿掉,其單趟陀螺系統損耗為 -29.83 dB、極化消光比為58 dB、隨機角度遊走為0.062172 deg/√hr且偏壓不穩定性約為0.2 deg/hr。
最後在優化陀螺儀系統中,經過前兩次不同陀螺系統的量測後,最終選擇一個定向極化分岐器,並更改為無50 Ω阻抗的長直波導相位調變器,其中額外增加金屬加熱器,其單趟陀螺系統損耗為 -25.38 dB、極化消光比為56.9 dB、沒有施加與施加金屬加熱器其隨機角度遊走為0.018103 deg/√hr 與0.015383 deg/√hr 且偏壓不穩定性為0.13 deg/hr與0.057 deg/hr。
This thesis focuses on the implementation of a silicon photonics driving chip that integrates functional photonic devices necessary in interferometric fiber optics gyroscope except light source and fiber coil. Key technique developed in this thesis is the fiber pigtailing technology for silicon photonics. We aligned angled polished fiber array to the grating coupler array and attached to each other with an index-matching UV glue (n = 1.46). A non-conductive bakelite housing is then utilized to enhance the mechanical strength of fiber array and to avoid the electrical noise. The optical insertion loss of assembled silicon photonics module is about 0.35 dB lower than the bare one. Therefore, as-realized silicon photonics chip is fiber pigtailed and packaged for gyroscope characterization. Here we investigated three different circuit layouts that are respectively designed for “purified light polarization”, “miniaturized”, and “optimized trade-off” gyroscope configuration.
In “purified light polarization” gyroscope design, we cascaded five polarization beam splitters in series to ensure pure TE-polarized light propagation on-chip with a polarization extinction ratio of 62 dB. The straight phase modulator is terminated with a 50 Ω resistor. The gyroscope system loss is measured as -46.8 dB. Allan deviation revealed a random angle walk of 0.0653 deg/√hr and a bias instability of 1 deg/hr.
In “miniaturized” gyroscope design, we only cascaded two polarization beam splitters in series to have a trade-off between polarization extinction ratio and insertion loss. The polarization extinction ratio is 58 dB and the gyroscope system loss is -29.83 dB. To reduce the footprint of the gyroscope system, we employed bent waveguide phase modulator design to make this device compact in size. There is no on-chip 50 Ω termination. Allan deviation revealed a random angle walk of 0.062172 deg/√hr and a bias instability of 0.2 deg/hr.
In “optimized trade-off” gyroscope design, we employed only one polarization beam splitter and long straight waveguide phase modulator without on-chip 50 Ω termination. We additionally introduce metal heaters on both arms of phase modulators in order to eliminate residual Michelson signals from the optical back-reflection of grating couplers. The polarization extinction ratio is 56.9 dB and the gyroscope system loss is -25.38 dB. Allan deviation revealed a random angle walk of 0.015383 (0.018103) deg/√hr and a bias instability of 0.057 (0.13) deg/hr for the gyroscope with (without) heaters.
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
內容目錄 vi
圖目錄 viii
表目錄 xii
1 第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
2 第二章 傳統干涉式光纖陀螺儀 7
2.1 傳統光陀螺儀基本架構 7
2.2 薩格納克效應 10
2.3 光纖陀螺儀干涉與調變原理 13
2.4 陀螺儀比例因子與艾倫方差分析 17
3 第三章 干涉式光纖陀螺儀實現在SOI平台 21
3.1 積體化矽光子干涉式光纖陀螺儀 21
3.2 不同干涉式光纖陀螺儀系統之設計與比較 30
3.3 矽光子陀螺儀晶片封裝打線 39
4 第四章 量測結果分析及討論 42
4.1 陣列光纖耦光量測 42
4.2 陣列光纖量測系統封裝技術之開發 51
4.3 干涉式光纖陀螺儀特性量測 58
4.4 不同干涉式光纖陀螺儀系統之比較 77
5 第五章 結論 80
6 第六章 未來工作 81
6.1 P-I-N相位調變器 81
6.2 光終止元件 85
參考文獻 87
[1]Yole Finance, and Yole.(2022). Acceleration of mergers & acquisitions: what lies ahead for high-end inertial sensors? from https://www.yolegroup.com/strategy-insights/acceleration-of-mergers-acquisitions-what-lies-ahead-for-high-end-inertial-sensors/(MAY. 12, 2022)
[2]Passaro, Vittorio MN, et al. "Gyroscope technology and applications: A review in the industrial perspective." Sensors 17.10 (2017): 2284.
[3]Yole Intelligence. (2022). Silicon Photonics 2022 from https://www.yolegroup.com/product/report/silicon-photonics-2022/(JUL. 2022)
[4]Zhang, Shaobo, et al. "High-performance fully differential photodiode amplifier for miniature fiber-optic gyroscopes." Optics express 27.3 (2019): 2125-2141.
[5]Motohara, Shinji, and Aritaka Ohno. "Fiber optic gyroscope with single mode fiber coil." Optical Fiber Sensors. Optica Publishing Group, 1992.
[6]Lefevre, Herve C. The fiber-optic gyroscope. Artech house, 2022.
[7]Pircher, G., and G. Hepner. "Perfectionnements aux dispositifs du type gyrometre interférometriquea laser (1967)." Französisches Patent 1: 720.
[8]Vali, Victor, and R. W. Shorthill. "Fiber ring interferometer." Applied optics 15.5 (1976): 1099-1100.
[9]Lloyd, Seth W., Michel JF Digonnet, and Shanhui Fan. "Modeling coherent backscattering errors in fiber optic gyroscopes for sources of arbitrary line width." Journal of lightwave technology 31.13 (2013): 2070-2078.
[10]Bergh, R., H. Lefevre, and H. Shaw. "An overview of fiber-optic gyroscopes." Journal of Lightwave Technology 2.2 (1984): 91-107.
[11]Shupe, David M. "Fiber resonator gyroscope: sensitivity and thermal nonreciprocity." Applied Optics 20.2 (1981): 286-289.
[12]El-Sheimy, Naser, Haiying Hou, and Xiaoji Niu. "Analysis and modeling of inertial sensors using Allan variance." IEEE Transactions on instrumentation and measurement 57.1 (2007): 140-149.
[13]Allan, David W. "Statistics of atomic frequency standards." Proceedings of the IEEE 54.2 (1966): 221-230.
[14]Lesage, Patrick, and Claude Audoin. "Characterization of frequency stability: uncertainty due to the finite number of measurements." IEEE Transactions on Instrumentation and Measurement 22.2 (1973): 157-161.
[15]AllanDW, BarnesJA. "AModifiedAllanVariance withIncreased OscillatorCharacterization Ability." The35thAnnualFrequencyControlSymposi um, Philadelphia, PA (1981).
[16]Allan, David W. "Time and frequency(time-domain) characterization, estimation, and prediction of precision clocks and oscillators." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 34.6 (1987): 647-654.
[17]Chaffee, James W. "Relating the Allan variance to the diffusion coefficients of a linear stochastic differential equation model for precision oscillators." IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 34 (1987): 655-658.
[18]鍾銘洋, "高消光比極化分歧器實現於絕緣層覆矽平台", 光電工程學系研究所, 國立中山大學, 2019.
[19]李音璇, "矽光子陀螺儀驅動晶片之光輸出輸入介面研製", 光電工程學系研究所, 國立中山大學, 2020.
[20]Product specification, “Polarizing Y-junction phase modulator,” Y-JPX-LN series, iXblue.
[21]IMEC isipp50g silicon photonics PDK, Sep 2022.
[22]黃淑敏, "微型化矽光子陀螺晶片設計與封裝技術開發", 光電工程學系研究所, 國立中山大學, 2022.
[23]國家中山科學研究院。
[24]Tsang, Hon Ki, et al. "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μ m wavelength." Applied Physics Letters 80.3 (2002): 416-418.
[25]Turner-Foster, Amy C., et al. "Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides." Optics express 18.4 (2010): 3582-3591.
[26]Soref, R. I. C. H. A. R. D. A., and B. R. I. A. N. R. Bennett. "Electrooptical effects in silicon." IEEE journal of quantum electronics 23.1 (1987): 123-129.
[27]Dimitropoulos, D., et al. "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides." Applied Physics Letters 86.7 (2005): 071115.
[28]Dimitropoulos, D., S. Fathpour, and B. Jalali. "Limitations of active carrier removal in silicon Raman amplifiers and lasers." Applied Physics Letters 87.26 (2005): 261108.
[29]Gajda, Andrzej, et al. "Design rules for pin diode carriers sweeping in nano-rib waveguides on SOI." Optics Express 19.10 (2011): 9915-9922.
電子全文 電子全文(網際網路公開日期:20280223)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊