|
[1]A. H. Lu and F. Schüth, Nanocasting: a versatile strategy for creating nanostructured porous materials, Advanced Materials, 2006, 18, 1793-1805. [2]B. Zdravkov, J. Čermák, M. Šefara, and J. Janků, Pore classification in the characterization of porous materials: A perspective, Open Chemistry, 2007, 5, 385-395. [3]M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417, 813-821. [4]J.-S. M. Lee and A. I. Cooper, Advances in conjugated microporous polymers, Chemical Reviews, 2020,120, 2171-2214. [5]Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chemical Society Reviews, 2013, 42, 8012-8031. [6]N. Miyaura, K. Yamada, and A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Letters, 1979, 20, 3437-3440. [7]K. Sonogashira, Y. Tohda, and N. Hagihara, A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Letters, 1975, 16, 4467-4470. [8]X. Yang and A. L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Advanced Energy Materials, 2019, 9, 1900747. [9]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 2018, 95, 197-206. [10]B. Hsia, Materials synthesis and characterization for micro-supercapacitor applications. University of California, Berkeley, 2013. [11]M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material''s performance for ultracapacitors, Energy & Environmental Science, 2010, 3, 1294-1301. [12]S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy, Nature Materials, 2017, 16, 16-22. [13]E. A. Olivetti and J. M. Cullen, Toward a sustainable materials system, Science, 2018, 360, 1396-1398. [14]S. Rashidi, J. A. Esfahani, and A. Rashidi, A review on the applications of porous materials in solar energy systems, Renewable and Sustainable Energy Reviews, 2017, 73, 1198-1210. [15]C. Perego and R. Millini, Porous materials in catalysis: challenges for mesoporous materials, Chemical Society Reviews, 2013, 42, 3956-3976. [16]Y. Li, L. Li, and J. Yu, Applications of zeolites in sustainable chemistry, Chem, 2017, 3, 928-949. [17]F. J. Sotomayor, K. A. Cychosz, and M. Thommes, Characterization of micro/mesoporous materials by physisorption: concepts and case studies, Accounts Materials & Surface Research, 2018, 3, 34-50. [18]K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, 1985, 57, 603-619. [19]M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 2015, 87, 1051-1069. [20]Tsyurupa, M. P., Maslova, L. A., Andreeva, A. I., Mrachkovskaya, T. A., & Davankov, V. A, Sorption of organic compounds from aqueous media by hypercrosslinked polystyrene sorbents ‘Styrosorbrs, Reactive Polymers, 1995, 25, 69-78. [21]Tsyurupa, M. P., and V. A. Davankov, Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review, Reactive and Functional Polymers, 2006, 66, 768-779. [22]Liangxiao, T., & Bien, T, Research progress in hypercrosslinked microporous organic polymers, Acta Chimica Sinica, 2015, 73, 530-540. [23]L. A. Tinker and A. J. Bard, Electrochemistry in liquid sulfur dioxide. 1. Oxidation of thianthrene, phenothiazine, and 9, 10-diphenylanthracene, Journal of the American Chemical Society, 1979, 101, 2316-2319. [24]Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. S. Wu, X. Bao, and W. Q. Deng, Conductive microporous covalent triazine‐based framework for high‐performance electrochemical capacitive energy storage, Angewandte Chemie International Edition, 2018, 130, 8124-8128. [25]Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, and S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, Journal of Materials Science, 2021, 56, 173-200. [26]Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive energy storage and electric power supply using an aza‐fused π‐conjugated microporous framework, Angewandte Chemie International Edition, 2011, 123, 8912-8916. [27]K. Sharma, A. Arora, and S. K. Tripathi, Review of supercapacitors: Materials and devices, Journal of Energy Storage, 2019, 21, 801-825. [28]Y. Jiang and J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy & Environmental Materials, 2019, 2, 30-37. [29]A. Y. S. Eng, V. Kumar, Y. Zhang, J. Luo, W. Wang, Y. Sun, W. Li, and Z. W. Seh, Room‐Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering, Advanced Energy Materials, 2021, 11, 2003493. [30]A. Wild, M. Strumpf, B. Häupler, M. D. Hager, and U. S. Schubert, All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers, Advanced Energy Materials, 2017, 7, 1601415. [31]M. G. Mohamed, S. U. Sharma, C.-H. Yang, M. M. Samy, A. A. K. Mohammed, S. V. Chaganti, J.-T. Lee, and S. Wei-Kuo, Anthraquinone-Enriched Conjugated Microporous Polymers as Organic Cathode Materials for High-Performance Lithium-Ion Batteries, ACS Applied Energy Materials, 2021, 4, 14628-14639. [32]C. W. Kang, Y.-J. Ko, S. M. Lee, H. J. Kim, J. Choi, and S. U. Son, Carbon black nanoparticle trapping: A strategy to realize the true energy storage potential of redox-active conjugated microporous polymers, Journal of Materials Chemistry A, 2021, 9, 17978-17984. [33]A. M. Khattak, H. Sin, Z. A. Ghazi, X. He, B. Liang, N. A. Khan, H. R. Alanagh, A. Iqbal, L. Li, and Z. Tang, Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage, Journal of Materials Chemistry A, 2018, 6, 18827-18832. [34]M. G. Mohamed, X. Zhang, T. H. Mansoure, A. F. El-Mahdy, C.-F. Huang, M. Danko, Z. Xin, and S.-W. Kuo, Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor, Polymer, 2020, 205, 122857. [35]M. G. Mohamed, A. EL-Mahdy, T.-S. Meng, M. M. Samy, and S.-W. Kuo, Multifunctional hypercrosslinked porous organic polymers based on tetraphenylethene and triphenylamine derivatives for high-performance dye adsorption and supercapacitor, Polymers, 2020, 12, 2426. [36]X.-C. Li, Y. Zhang, C.-Y. Wang, Y. Wan, W.-Y. Lai, H. Pang, and W. Huang, Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors, Chemical Science, 2017, 8, 2959-2965. [37]N. Passe-Coutrin, S. Altenor, D. Cossement, C. Jean-Marius, and S. Gaspard, Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area, Microporous and Mesoporous Materials, 2008, 111, 517-522. [38]Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, and R. B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films, Materials Horizons, 2017, 4, 1145-1150. [39]Z. Li, S. Gadipelli, Y. Yang, G. He, J. Guo, J. Li, Y. Lu, C. A. Howard, D. J. Brett, and I. P. Parkin, Exceptional supercapacitor performance from optimized oxidation of graphene-oxide, Energy Storage Materials, 2019, 17, 12-21. [40]K. Sheng, Y. Sun, C. Li, W. Yuan, and G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Scientific Reports, 2012, 2, 247. [41]T. Das and B. Verma, Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes, Polymer, 2019, 168, 61-69. [42]Z. Weng, Y. Su, D. W. Wang, F. Li, J. Du, and H. M. Cheng, Graphene–cellulose paper flexible supercapacitors, Advanced Energy Materials, 2011, 1, 917-922. [43]R. Xu, F. Guo, X. Cui, L. Zhang, K. Wang, and J. Wei, High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone, Journal of Materials Chemistry A, 2015, 3, 22353-22360. [44]M. G. Mohamed, T. H. Mansoure, Y. Takashi, M. M. Samy, T. Chen, and S.-W. Kuo, Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage, Microporous and Mesoporous Materials, 2021, 328, 111505. [45]L. Zhou, D. L. Danilov, R. A. Eichel, and P. H. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Advanced Energy Materials, 2021, 11, 2001304. [46]S. S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions, Journal of Power Sources, 2013, 231, 153-162. [47]X. Yang, B. Dong, H. Zhang, R. Ge, Y. Gao, and H. Zhang, Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries, RSC Advances, 2015, 5, 86137-86143. [48]Z. Ye, Y. Jiang, L. Li, F. Wu, and R. Chen, A High‐Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries, Advanced Materials, 2020, 32, 2002168. [49]W. Weng, S. Yuan, N. Azimi, Z. Jiang, Y. Liu, Y. Ren, A. Abouimrane, and Z. Zhang, Improved cyclability of a lithium–sulfur battery using POP–Sulfur composite materials, RSC Advances, 2014, 4, 27518-27521. [50]K. Ding, Q. Liu, Y. Bu, K. Meng, W. Wang, D. Yuan, and Y. Wang, High surface area porous polymer frameworks: Potential host material for lithium–sulfur batteries, Journal of Alloys and Compounds, 2016, 657, 626-630. [51]J. H. Zeng, Y. F. Wang, S. Q. Gou, L. P. Zhang, Y. Chen, J. X. Jiang, and F. Shi, Sulfur in hyper-cross-linked porous polymer as cathode in lithium–sulfur batteries with enhanced electrochemical properties, ACS Applied Materials & Interfaces, 2017, 9, 34783-34792. [52]H. Liao, H. Ding, B. Li, X. Ai, and C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries, Journal of Materials Chemistry A, 2014, 2, 8854-8858. [53]B. Guo, T. Ben, Z. Bi, G. M. Veith, X.-G. Sun, S. Qiu, and S. Dai, Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries, Chemical Communications, 2013, 49, 4905-4907. [54]L. Zhou, D. L. Danilov, R. A. Eichel, and P. H. Notten, Host materials anchoring polysulfides in Li–S batteries reviewed, Advanced Energy Materials, 2021, 11, 2001304. [55]A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable lithium–sulfur batteries, Chemical Reviews, 2014, 23, 11751-11787. [56]A. Manthiram, Y. Fu, and Y. Su, Sulfur-lithium-insertion compound composite cathodes for Li-S batteries, Accounts of Chemical Research, 2013, 46, 1125-1134. [57]R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, and F. Li, More reliable lithium‐sulfur batteries: status, solutions and prospects, Advanced Materials, 2017, 29, 1606823. [58]Z. Li, H. B. Wu, and X. W. D. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries, Energy & Environmental Science, 2016, 9, 3061-3070. [59]H.-J. Peng, J.-Q. Huang, and Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries, Chemical Society Reviews, 2017, 46, 5237-5288. [60]H. J. Peng, J. Q. Huang, X. B. Cheng, and Q. Zhang, Review on high‐loading and high‐energy lithium–sulfur batteries, Advanced Energy Materials, 2017, 7, 1700260. [61]G. Li, Z. Chen, and J. Lu, Lithium-sulfur batteries for commercial applications, Chem, 2018, 4, 3-7. [62]H. Yuan, H. J. Peng, J. Q. Huang, and Q. Zhang, Sulfur redox reactions at working interfaces in lithium–sulfur batteries: a perspective, Advanced Materials Interfaces, 2019, 6, 1802046. [63]J.-T. Wang, Y.-P. Chuang, C.-C. Wang, and J.-L. Hong, Hydrogen bonds to balance mechanical and adhesive properties of pectin/polyacrylic acid blends as efficient binders for cathode in lithium-sulfur battery, Materials Today Communications, 2022, 31, 103211. [64]C. Deng, Z. Wang, S. Wang, and J. Yu, Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies, Journal of Materials Chemistry A, 2019, 7, 12381-12413. [65]S. Rehman, K. Khan, Y. Zhao, and Y. Hou, Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives, Journal of Materials Chemistry A, 2017, 5, 3014-3038. [66]O. Ogoke, G. Wu, X. Wang, A. Casimir, L. Ma, T. Wu, and J. Lu, Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 2017, 5, 448-469. [67]Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, and R. Wang, Porous organic polymers for polysulfide trapping in lithium–sulfur batteries, Advanced Functional Materials, 2018, 28, 1707597. [68]H. Bildirir, V. G. Gregoriou, A. Avgeropoulos, U. Scherf, and C. L. Chochos, Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges, Materials Horizons, 2017, 4, 546-556. [69]N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, and A. Thomas, Trends and challenges for microporous polymers, Chemical Society Reviews, 2017, 46, 3302-3321. [70]X. Zhan, Z. Chen, and Q. Zhang, Recent progress in two-dimensional COFs for energy-related applications, Journal of Materials Chemistry A, 2017, 5, 14463-14479. [71]C. Zhang, R. Kong, X. Wang, Y. Xu, F. Wang, W. Ren, Y. Wang, F. Su, and J.-X. Jiang, Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage, Carbon, 2017, 114, 608-618. [72]B. Zhang, W. Wang, L. Liang, Z. Xu, X. Li, and S. Qiao, Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting, Coordination Chemistry Reviews, 2021, 436, 213782. [73]J. Chen, C. Du, Y. Zhang, W. Wei, L. Wan, M. Xie, and Z. Tian, Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor, Polymer, 2019, 162, 43-49. [74]S. Liu, Z. Wang, C. Zhao, X. Huang, X. Liang, X. Wang, S. Lu, and R. Scherpbier, Effects of early comprehensive interventions on child neurodevelopment in poor rural areas of China: a moderated mediation analysis, Public Health, 2018, 159, 116-122. [75]S. K. Kaverlavani, S. Moosavifard, and A. Bakouei, Designing graphene-wrapped nanoporous CuCo 2 O 4 hollow spheres electrodes for high-performance asymmetric supercapacitors, Journal of Materials Chemistry A, 2017, 5, 14301-14309. [76]Y. Yao, C. Ma, J. Wang, W. Qiao, L. Ling, and D. Long, Rational design of high-surface-area carbon nanotube/microporous carbon core–shell nanocomposites for supercapacitor electrodes, ACS Applied Materials & Interfaces, 2015, 7, 4817-4825. [77]U. Acharya, P. Bober, M. Trchová, A. Zhigunov, J. Stejskal, and J. Pfleger, Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite, Polymer, 2018, 150, 130-137. [78]Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured conductive polymers for advanced energy storage, Chemical Society Reviews, 2015, 44, 6684-6696. [79]H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, and Q. Zhang, Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries, Angewandte Chemie International Edition, 2016, 55, 12990-12995. [80]M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo, L. Mai, and G. Liu, Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery, Nano Energy, 2017, 38, 82-90. [81]J. J. Griebel, R. S. Glass, K. Char, and J. Pyun, Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense, Progress in Polymer Science, 2016, 58, 90-125. [82]X. Tao, X. Chen, Y. Xia, H. Huang, Y. Gan, R. Wu, and F. Chen, Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries, Journal of Materials Chemistry A, 2013, 1, 3295-3301. [83]B. Zhang, X. Qin, G. Li, and X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, 2010, 3, 1531-1537. [84]L. Li, G. Ruan, Z. Peng, Y. Yang, H. Fei, A.-R. O. Raji, E. L. Samuel, and J. M. Tour, Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes, ACS Applied Materials & Interfaces, 2014, 6, 15033-15039. [85]K. Li, B. Wang, D. Su, J. Park, H. Ahn, and G. Wang, Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique, Journal of Power Sources, 2012, 202, 389-393. [86]D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, and W.-C. Li, High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery, ACS Applied Materials & Interfaces, 2013, 5, 2208-2213. [87]A. I. Cooper, Conjugated microporous polymers, Advanced Materials, 2009, 21, 1291-1295. [88]L. Chen, Y. Honsho, S. Seki, and D. Jiang, Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna, Journal of the American Chemical Society, 2010, 132, 6742-6748. [89]L. Chen, Y. Yang, and D. Jiang, CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers, Journal of the American Chemical Society, 2010, 132, 9138-9143. [90]Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive energy storage and electric power supply using an aza‐fused π‐conjugated microporous framework, Angewandte Chemie International Edition, 2011, 123, 8912-8916. [91]F. Xu, X. Chen, Z. Tang, D. Wu, R. Fu, and D. Jiang, Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage, Chemical Communications, 2014, 50, 4788-4790. [92]A. Bhunia, V. Vasylyeva, and C. Janiak, From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities, Chemical Communications, 2013, 49, 3961-3963. [93]J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. Jones, Y. Z. Khimyak, and A. I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks, Journal of the American Chemical Society, 2008, 130, 7710-7720. [94]L. Wang, Y. Wan, Y. Ding, S. Wu, Y. Zhang, X. Zhang, G. Zhang, Y. Xiong, X. Wu, and J. Yang, Conjugated microporous polymer nanosheets for overall water splitting using visible light, Advanced Materials, 2017, 29, 1702428. [95]A. Mukhtar, S. Saqib, N. B. Mellon, S. Rafiq, M. Babar, S. Ullah, N. Muhammad, A. L. Khan, M. Ayoub, and M. Ibrahim, A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels, Journal of Cleaner Production, 2020, 277, 123999. [96]P. Xiao and Y. Xu, Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications, Journal of Materials Chemistry A, 2018, 6, 21676-21695. [97]Winter, M.; Brodd, R. J., "What are batteries, fuel cells, and supercapacitors ?", Chemical Reviews, 2004, 104, 4245-4270. [98]Huang, Z. H.; Liu, T. Y.; Song, Y.; Li, Y.; Liu, X. X., "Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon", Nanoscale, 2017, 9, 13119-13127. [99]Snook, G. A.; Kao, P.; Best, A. S., "Conducting-polymer-based supercapacitor devices and electrodes", Journal of Power Sources, 2011, 196, 1-12. [100]Halder, A.; Ghosh, M.; Khayum, M. A.; Bera, S.; Addicoat, M.; Sasmal, H. S.; Karak, S.; Kurungot, S.; Banerjee, R., "Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors", Journal of the American Chemical Society, 2018, 140, 10941-10945. [101]Samy, M. M.; Mohamed, M. G.; El-Mahdy, A. F. M.; Mansoure, T. H.; Wu, K. C.; Kuo, S. W., "High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes", ACS Applied Materials & Interfaces, 2021, 13, 51906-51916. [102]F. A. Permatasari, M. A. Irham, S. Z. Bisri, and F. Iskandar, Carbon-based quantum dots for supercapacitors: Recent advances and future challenges, Nanomaterials, 2021,11, 91. [103]X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature Materials, 2009, 8, 500-506. [104]H. Liao, H. Ding, B. Li, X. Ai, and C. Wang, Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries, Journal of Materials Chemistry A, 2014, 2, 8854-8858. [105]H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai, and C. Wang, A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries, Journal of Materials Chemistry A, 2016, 4, 7416-7421. [106]S. N. Talapaneni, T. H. Hwang, S. H. Je, O. Buyukcakir, J. W. Choi, and A. Coskun, Elemental‐sulfur‐mediated facile synthesis of a covalent triazine framework for high‐performance lithium–sulfur batteries, Angewandte Chemie International Edition, 2016, 55, 3106-3111. [107]Q. Pang, X. Liang, C. Y. Kwok, and L. F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nature Energy, 2016, 1, 16132. [108]N. Baig, S. Shetty, S. Al-Mousawi, and B. Alameddine, Conjugated microporous polymers using a copper-catalyzed [4+2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption, Polymer Chemistry, 2021, 12, 2282-2292. [109]S. Wang, Y. Liu, Y. Ye, X. Meng, J. Du, X. Song, and Z. Liang, Ultrahigh volatile iodine capture by conjugated microporous polymer based on N, N, N′, N′-tetraphenyl-1, 4-phenylenediamine, Polymer Chemistry, 2019, 10, 2608-2615. [110]Q.-Q. Dang, X.-M. Wang, Y.-F. Zhan, and X.-M. Zhang, An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake, Polymer Chemistry, 2016, 7, 643-647. [111]Z. Yan, Y. Yuan, Y. Tian, D. Zhang, and G. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angewandte Chemie International Edition, 2015, 127, 12924-12928. [112]X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, and C. Xia, Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks, Chemistry of Materials, 2018, 30, 2299-2308. [113]M. Li, H. Zhao, and Z.-Y. Lu, Highly efficient, reversible iodine capture and exceptional uptake of amines in viologen-based porous organic polymers, RSC Advances, 2020, 10, 20460-20466. [114]B. J. Riley, J. D. Vienna, D. M. Strachan, J. S. McCloy, and J. L. Jerden Jr, Materials and processes for the effective capture and immobilization of radioiodine: A review, Journal of Nuclear Materials, 2016, 470, 307-326. [115]K. W. Chapman, P. J. Chupas, and T. M. Nenoff, Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation, Journal of the American Chemical Society, 2010, 132, 8897-8899. [116]D. Dai, J. Yang, Y. C. Zou, J. R. Wu, L. L. Tan, Y. Wang, B. Li, T. Lu, B. Wang, and Y. W. Yang, Macrocyclic arenes‐based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption, Angewandte Chemie, 2021, 133, 9049-9057. [117]L. Xie, Z. Zheng, Q. Lin, H. Zhou, X. Ji, J. L. Sessler, and H. Wang, Calix [4] pyrrole‐based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water, Angewandte Chemie, 2022, 134, 202113724. [118]D. Gambhir, M. Venkateswarulu, T. Verma, and R. R. Koner, High adsorption capacity of an sp2/sp3-N-rich polymeric network: from molecular iodine capture to catalysis, ACS Applied Polymer Materials, 2020, 2, 152-158. [119]Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E.; Basha, M.; Qasem, N. A. A.; Peedikakkal, A.; Laoui, T.; Ali, M., "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review", Applied Energy, 2016, 161, 225-255. [120]Han, S.-J.; Yoo, M.; Kim, D.-W.; Wee, J.-H., "Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent", Energy & Fuels, 2011, 25, 3825-3834. [121]Choi, Y. S.; Im, J.; Jeong, J. K.; Hong, S. Y.; Jang, H. G.; Cheong, M.; Lee, J. S.; Kim, H. S., "CO2 absorption and desorption in an aqueous solution of heavily hindered alkanolamine: Structural elucidation of CO2-containing species", Environmental Science & Technology, 2014, 48, 4163-4170. [122]Tian, W.; Zhang, H.; Sun, H.; Suvorova, A.; Saunders, M.; Tade, M.; Wang, S., "Heteroatom (N or N‐S)‐doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications", Advanced Functional Materials, 2016, 26, 8651-8661. [123]Demir, M.; Tessema, T.-D.; Farghaly, A. A.; Nyankson, E.; Saraswat, S. K.; Aksoy, B.; Islamoglu, T.; Collinson, M. M.; El-Kaderi, H. M.; Gupta, R. B., "Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications", International Journal of Energy Research, 2018, 42, 2686-2700. [124] Q. Liu, Z. Tang, M. Wu, B. Liao, H. Zhou, B. Ou, G. Yu, Z. Zhou, and X. Li, Novel ferrocene-based nanoporous organic polymers for clean energy application, RSC Advances, 2015, 5, 8933-8937. [125]Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang, A. Li, and W. Deng, Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake, Journal of Materials Chemistry A, 2015, 3, 87-91. [126]Y. Cui, J. Du, Y. Liu, Y. Yu, S. Wang, H. Pang, Z. Liang, and J. Yu, Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger''s base for CO2 adsorption, catalysis and sensing, Polymer Chemistry, 2018, 9, 2643-2649.
|