跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張郭虎
研究生(外文):Guo-Hu Zhang
論文名稱:基於卟啉的多官能基苯並噁嗪之合成與鑒定研究
論文名稱(外文):The synthesis and characterization of muti-functionalized benzoxazine based on porphyrin
指導教授:郭紹偉郭紹偉引用關係
指導教授(外文):Kuo, Shiao-Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:60
中文關鍵詞:苯並噁嗪開環聚合卟啉金屬錯合物熱穩定性
外文關鍵詞:Polybenzoxazinering-opening polymerizationporphyrinmetal complexthermal stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗由對硝基苯甲醛作爲起始反應物合成四氨基苯基卟啉(TAPP),接著通過還原TAPP與水楊醛製得的席夫堿,最後再與甲醛反應合成出一種新型多官能化的苯並噁嗪(Benzoxazine,以下簡稱BZ)。隨後利用傅立葉轉換紅外光譜儀(FT-IR)、核磁共振氫譜(1H NMR)和核磁共振碳譜(13C NMR)來鑒定BZ的化學結構。進一步地,我們通過BZ與醋酸鎳和醋酸鋅的配位反應引入了鎳和鋅兩種過渡金屬元素,同樣利用傅FT-IR、1H NMR、13C NMR來鑒定卟啉-苯並噁嗪鎳錯合物(Por-BZ/Ni)和卟啉-苯並噁嗪鋅錯合物(Por-BZ/Zn)的化學結構,並使用X射線光電子能譜(XPS)進一步證實了Ni和Zn離子摻入卟啉結構中。
我們使用DSC、TGA和FT-IR測量了通過Por-BZ的開環聚合(ROP)形成的產物的熱性能。由於連接在BZ單元上的卟啉部分的剛性結構,ROP的最大放熱固化溫度(314 °C)高於典型Pa型BZ單體(約260 °C);此外,poly(Por-BZ)在240 °C熱聚合後具有較高的熱分解溫度(Td10 = 478 °C)和殘炭率(66 wt%)。Ni和Zn離子的加入顯著降低了Por-BZ/Ni和Por-BZ/Zn錯合物的熱ROP溫度約30 °C。金屬離子作為Por-BZ單體熱聚合的有效促進劑和催化劑,也提高了熱聚合後的熱穩定性。
通過光致發光光譜(PL)和紫外/可見光吸收光譜(UV/Vis)研究了合成的BZ和Por-BZ/Metal的光化學性質。BZ和Por-BZ/Metal多種溶劑中均表現出較好的溶解性。藉由PL光譜得知,BZ及其反應中間體具有ACQ(Aggregation cause quenching)的性質。室溫下Por-BZ/Ni與Por-BZ/Zn溶於溶劑後,受到紫外光照射時均能激發出明顯的紅光。其中鋅離子的加入能明顯提高BZ的PL發射強度。產物的這些性質表明了其在高熱穩定性和發光材料的應用方面具有潛力。
In this study, we synthesized a new kind of mutil-functionalized benzoxazine through reduction of the Schiff base prepared from 4-nitrobenzaldehyde derivative with salicylaldehyde and subsequent reaction of the resulting o-hydroxybenzylamine with CH2O.Then we used Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR) and carbon nuclear magnetic resonance spectroscopy (13C NMR) to identify the chemical structures of BZ. Furthermore, we introduced two kinds of transition metal ions (Nickel and Zinc) to BZ through the coordination reaction of BZ with Ni(OAc)2·2H2O and Zn(OAc)2·2H2O. Then We used FT-IR, and NMR to identify the chemical structures of Por-BZ/Zn and Por-BZ/Ni. The incorporation of Ni(II) and Zn(II) ions into the porphyrin structures was confirmed by X-ray photoelectron spectroscopy (XPS).
Thermal properties of the product formed through ring-opening polymerization (ROP) were measured by DSC, TGA and FT-IR spectroscopy. Because of the rigid structure of the porphyrin units appended to the benzoxazine, the exothermic maximum curing temperature (314 °C) of Por-BZ was higher than the typical Pa-type benzoxazine monomer (260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. TGA spectra revealed that the addition of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes by 30 °C. The metal ions acted as the effective catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization.
The photochemical properties of the synthesized BZ and Por-BZ/Metal were studied by ultraviolet/visible light absorption spectroscopy (UV/Vis) and photoluminescence spectroscopy (PL). According to the PL spectra, BZ and its intermediate products exhibited ACQ properties, and the addition of metal ions can increase the emission intensity of BZ. After dissolved in solvents at room temperature, both of Por-BZ/Ni and Por-BZ/Zn can emit obvious red light when excited by ultraviolet light. The addition of zinc ions can improve the PL emission intensity of BZ significantly. The high thermal stability and good luminescent properties of our products indicate their potential for applications.
論文審定書 i
致謝 iii
摘要 iv
Abstract v
第一章 緒論1
1-1 簡介1
1-2 研究動機2
第二章 文獻回顧3
2-1 苯並噁嗪(Benzoxazine)3
2-2 苯並噁嗪之聚合反應(Polymerization of Benzoxazine)4
2-3 金屬卟啉化合物7
2-4 金屬卟啉化合物的發光原理9
第三章 實驗方法與步驟12
3-1 實驗內容及流程12
3-2 實驗藥品13
3-3 實驗步驟15
3-3-1 合成5,10,15,20-Tetrakis(4-aminophenyl)porphyrin (TAPP)15
3-3-2 合成Porphyrin-salicylaldehyde15
3-3-3 合成Porphyrin-hydroxybenzylamine16
3-3-4 合成Por-BZ (Por-BZ)16
3-3-5 合成Por-BZ/Nickel (II) (Por-BZ/Ni)16
3-3-6 合成Por-BZ/Zinc (II) (Por-BZ/Zn)17
3-3-7 合成Polybenzoxazine17
3-4 儀器介紹18
3-4-1 傅立葉轉紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 型號:Bruker Tensor-27 18
3-4-2核磁共振光譜儀(Nuclear Magnetic Resonance,NMR)型虢︰Varian Unity Inova-500 18
3-4-4差示掃描量熱儀(Differential scanning calorimetry)型號:TAQ-20 19
3-4-5紫外光/可見光吸收光譜(Ultraviolet / Visible Speetrophotometer)型號:Perkin Elmer UV / Vis Lambda 3520
3-4-6 光致發光光譜儀(Photo-Luminescence,PL)型號:LabGuide X350、450W Xe lamp20
3-4-7 X射綫光電子能譜儀(X-ray photoelectron spectroscopy)型號:K-Alpha21
第四章 結果與討論22
4-1 Por-BZ分析研究22
4-1-1 5,10,15,20-Tetrakis(4-aminophenyl)porphyrin結構鑑定分析22
4-1-2 Por-BZ合成鑑定分析 25
4-1-3 Por-BZ交聯性質與熱穩定性研究 27
4-2 Por-BZ/Metal分析研究 30
4-2-1 Por-BZ/Metal合成鑑定分析 30
4-2-2 Por-BZ/Metal交聯性質與熱穩定性研究 34
4-3 Por-BZ與Por-BZ/Metal光學性質分析38
4-3-1 Por-BZ之吸收光譜性質 38
4-3-2 Por-BZ之光致發光光譜性質 40
第五章 結論44
第六章 參考文獻 45
1. F.W. Holly, A. C. Cope J. Am. Chem. Soc. 1944, 66, 1875–1879.
2. H.P. Higginbottom, U.S. Pat. 1985, 4, 557, 979.
3. X. Ning, H. Ishida, Polym. Sci. Polym. Chem.1994, 32, 1121.
4. H. Ishida, Handbook of Polybenzoxazine, 2011, Chapter 1.
5. C.F. Wang, Y.C. Su, S.W. Kuo, C.F. Huang, Y.C. Sheen, F.C. Chang, Angew. Chem. Int. Ed. 2006, 45, 2248.
6. N. Krueson, H. Manuspiya, P. Laoratanakul, H. Ishida, Adv. Mater. Revs. 2008, 55, 105.
7. G.P. Hao, W.С. Li, D. Qian, A.H. Lu, J. Am. Chem. Soc. 2011, 133, 11378.
8. W.J. Burke, J. Am. Chem. Soc. 1944, 166, 1875.
9. H. Schreiber, German Offen 1973,2, 255, 504.
10. W. Burke, K. Murdoch, J. Am. Chem. Soc. 1954, 76 ,1677.
11. A. F, Hardman, U.S. Pat. 1946, 2, 411, 427.
12. A. Bruson, U.S. Pat. 1938, 2, 112, 434.
13. X. Ning, H. Ishida, J. Polym. Sci. A Polym. Chem. 1994, 32, 1121.
14. W. Men, Z. Lu, J. Appl. Polym. Sci. 2007, 106, 2769.
15. P. Herera, K. Doyama, H. Abc, H. Ishida, Macromolecules 2008, 41, 9704.
16. K. Demir, B. Kiskan, B. Aydogan, Y. Yagci, React. Funct. Polym. 2013, 73 ,346.
17. H. Ishida, X. Ning, J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 921.
18. W.J. Burke, M.J. Kolbezen, C.W. Stephen, J. Org. Chem. 1952, 74, 3601–3605.
19. J.P. Dunkers, Ph.D. Thesis, Case Western Reserve University, 1994.
20. S. Wirasate, D. Allen, H. Ishida, J. Appl. Polym. Sci. 1998, 70, 1299.
21. H. Ishida, D. Allen, J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 1019–1030.
22. H. Kim, H. Ishida, Macromol. Symp. 2003, 195, 123.
23. H. Ishida, H.Y. Low, Macromolecules 1997, 30, 1099–1106.
24. X. Liu, Y. Gu, Acta. Polym. Sin. 2000, 612–619.
25. X. Liu, Y. Gu, J. Appl. Polym. Sci. 2002, 84, 1107–1113.
26. R. Walters, R. Lyon, J. Appl. Polym. Sci. 2003, 87, 548.
27. C.M. Che, V. K.Y. Lo, Chem. Soc. Rev. 2011, 40, 1950.
28. Z. Fang, R. Breslow, Org. Lett. 2006, 8, 251.
29. B. Yuan, J. Guan, J. Peng, G.Z. Zhu, Chem. Eng. J. 2007, 330, 109.
30. K.L. Luska, A. Bordet, S. Tricard, I. Sinev, W. Grünert, B. Chaudret, W. Leitner, ACS Catal. 2016, 6, 3719.
31. H. Wang, J. M. Krier, Z. Zhu, G. Melaet, Y. Wang, G. Kennedy, S. Alayoglu, K. An, G.A. Somorjai, ACS Catal. 2013, 3, 2371.
32. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Nat. Mater. 2007, 6, 241.
33. L. Gan, C. Cui, S. Rudi, P. Strasser, Top. Catal. 2014, 57, 236.
34. S. Shan, V. Petkov, L. Yang, J. Luo, P. Joseph, C.J. Zhong, J. Am. Chem. Soc. 2014, 136, 7140.
35. S. Bai, Q. Shao, P. Wang, Q. Dai, X. Wang, X. Huang, J. Am. Chem. Soc. 2017, 139, 6827.
36. D.S. Shephard, T. Maschmeyer, G. Sankar, J. M. Thomas, D. Ozkaya, B.F.G. Johnson, R. Raja, R.D. Oldroyd, R.G. Bell, Chem. Eur. J. 1998, 4, 1214.
37. Y.R. Wang, Y.Q. Lan, Nat. Com. 2018, 9, 4466.
38. Q. Wu, R. Cao, ACS. Energy Lett. 2020, 5, 3, 1005.
39. Z.F. Xin, Y.Q. Lan, Nano Energy 2020, 67, 104233.
40. H. Zhong, R.H. Wang, Adv. Fun. Mat. 2020, 30, 35, 2002654.
41. F.C. Leng, ACS Catal. 2018, 8, 5, 4583.
42. B. Guo, X.L. Cai, B. Liu, J. Mater. Chem. B 2016,4, 4690-4695.
43. T. Wakahara, K. Nagaoka, A. Nakagawa, ACS Appl. Mater. Interfaces 2020, 12, 2, 2878-2883.
44. C. Zhang, P. Chen, H. Dong, Adv. Mater. 2015, 27, 36, 5379-5387.
45. X. Dong, C. Wei, T. Liu, Z. Qian, ACS Appl. Mater. Interface 2016, 8, 5104 -5113.
46. X. Liang, X. Li, X. Yue and Z. Dai, Angew. Chem. 2011, 123, 11826-11831.
47. K. Lu, C. He, W. Lin, J. Am. Chem. Soc. 2015, 137, 7600-7603.
48. J. Park, D. Feng, S. Yuan, H. Zhou, Angew. Chem. Int. Ed. 2014, 53, 1-6.
49. R. Xu, Y. Wang, X. Duan, K. Lu, A. Hu, W. Lin, J. Am. Chem. Soc. 2016, 138, 2158-2161.
50. J.F. Lovell, A. Roxin, G. Zheng, Biomacromolecules 2011, 12, 3115-3118.
51. C. Aggelidou, T.A. Theodossiou, K. Yannakopoulou, Photochem. Photobiol. 2013, 89, 1011-1019.
52. M. Wu, Z. Yu, Y. Liu, D. Feng, J. Yang, X. Yin, T. Zhang, D. Chen, T. Liu, X. Feng, ChemBioChem 2013, 14, 979-986.
53. I. Takao, Chemical reviews 2012, 112, 08, 4541.
54. M. Gouterman, J. Chem. Phys. 1959, 30, 5, 1139.
55. M. Gouterman, J. Mol. Spectrosc. 1961, 6, 138.
56. M. Christian, Ph.D. Thesis, University of Erlangen–Nuremberg, 2020.
57. A. Zhang, L. Kwan, M. Stillman, Organic and Biomolecular Chemistry 2017, 15, 43, 9081.
58. A. Zhang, M. Stillman, Phys. Chem. Chem. Phys. 2018, 20, 18, 12470.
59. S, Bhunia, A. Pradhan, ACS Appl. Mater. Interfaces 2017, 9, 28, 23843–23851
60. X. Zhang, S. W. Kuo, Polymer 2020, 201, 122552.
61. Ishihara, J. Labuta, K, Ariga, Phys. Chem. Chem. Phys. 2014, 16, 21.
62. G. Torre, P. Vazquez, F.A. Lopez, T. Torres, Chem. Rev. 2004, 104, 3723–3750.
電子全文 電子全文(網際網路公開日期:20240831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊