跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晉丞
研究生(外文):Chin-Cheng Lee
論文名稱:透過後處理消除熔融沉積成型物體內部之層間缺陷並增強機械性質
論文名稱(外文):Eliminate the inner layer defects of FDM objects and improve overall mechanical properties by post-processing
指導教授:邱政維
指導教授(外文):Kevin Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:49
中文關鍵詞:熔融沉積成型3D列印高分子重熔熱處理聚乳酸參數優化
外文關鍵詞:Fused deposition modeling3D printingpolymer remelting processpolylactic acidparameter optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熔融沉積成型(FDM)技術具有高度客製化和不需開模具便可創造三維物體之優勢,但由於其自下而上堆疊的機制讓三維物體層與層之間界面處有結構性缺陷存在,這些缺陷也會使整體之機械性質下降。首先,使用聚乳酸(PLA)線材列印之原胚,放入裝滿二氧化矽的臨時砂模中,利用其熱塑性塑膠固液轉換的熱性質放入烘箱進行退火熱處理,除了維持3D列印物體複雜結構同時將物體重新熔融消除內部缺陷。再經過系統性參數優化後對相似表現性質進行歸納,除了尋找最佳參數範圍,針對各區物理與機械性質進行探討以及再現性及後續具有潛力之應用。例如:將複雜懸空物件熔融並部分修復;消除模型接合之間極大缺陷造成的應力集中並大幅增強整體機械性質;探討將FDM應用在全口重建植牙(All on-4)可行性及後續利用高強度及高生物相容熱塑性塑膠:聚醚醚酮(PEEK),使用超高溫列印機列印PEEK齒模並用相同進一步驗證FDM具有潛力能應用在牙醫領域上。
Fused Deposition Modeling (FDM) has the advantages of being highly customizable and capable of creating three-dimensional structures without a mold. The technique builds a structure by layering material in slightly varied patterns. Due to the formation process, defects exist between layers inside the 3D prints, and the defects can lower overall mechanical performance. Hence, this project endeavors to eliminate the defects between layers and strengthen polylactic acid (PLA) 3D prints by remelting the different layers of printed thermoplastic together. In a typical strengthening process, a 3D print would be submerged in a powder bath to act as support and help the 3D print maintain its original shape. The entire powder bath and submerged 3D print would be heated to remelt the plastic to eliminate interlayer defects. After systematic optimization, even printed material can achieve 3D prints with greatly improved mechanical properties regardless of the initial printing direction. Additionally, this research suggests a method of post-processing for strengthening 3D prints of various thermoplastics regardless of the initial printing directions. The ease of this remelting process allows it to be adapted in a wide variety of conditions and trigger discovery of future applications.
論文審定書i
摘要 ii
Abstract iii
List of figures vi
List of table ix
1. Introduction 1
2. Experimental 7
2.1 Materials 7
2.1.1 Polylactic acid (PLA) 7
2.1.2 Silica powder 7
2.2 Equipment 7
2.3 Experiment procedure 10
3. Result and Discussion 12
3.1 Thermal annealing and remelting PLA 12
3.2 Distribution of different remelting parameters 15
3.3 FT-IR and GPC characterization 17
3.4 Mechanical properties 20
3.5 Macrostructure of remelted samples 23
3.6 Latch structure tensile properties & Complex structures repaired 25
3.7 FDM printed dental implants 28
3.8 FDM prints polyether ether ketone and reinforces by remelting process3 1
4. Conclusion 33
Reference 35
Supporting information 38
1.Kristiawan, R. B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z., A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering 2021, 11 (1), 639-649.
2.Crump, S. S., Apparatus and method for creating three-dimensional objects. Google Patents: 1992.
3.Kim, H.; Kim, D.; Lee, J.; Park, K., Improvement of mechanical properties and surface finish of 3D-printed polylactic acid parts by constrained remelting. Advanced Materials Letters 2017, 8, 1199-1203.
4.Singh, R.; Singh, S.; Singh, I. P.; Fabbrocino, F.; Fraternali, F., Investigation for surface finish improvement of FDM parts by vapor smoothing process. Composites Part B: Engineering 2017, 111, 228-234.
5.Dizon, J. R. C.; Gache, C. C. L.; Cascolan, H. M. S.; Cancino, L. T.; Advincula, R. C., Post-processing of 3D-printed polymers. Technologies 2021, 9, 61.
6.Wang, Y.; Liu, Z.; Gu, H.; Cui, C.; Hao, J., Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating. Journal of Materials Research 2019, 34, 3412-3419.
7.Cano-Vicent, A.; Tambuwala, M. M.; Hassan, S. S.; Barh, D.; Aljabali, A. A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á., Fused deposition modelling: Current status, methodology, applications and future prospects. Additive Manufacturing 2021, 47, 102378.
8.Yao, T.; Deng, Z.; Zhang, K.; Li, S., A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering 2019, 163, 393-402.
9.Levenhagen, N. P.; Dadmun, M. D., Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer 2018, 152, 35-41.
10.Özen, A.; Abali, B. E.; Völlmecke, C.; Gerstel, J.; Auhl, D., Exploring the role of manufacturing parameters on microstructure and mechanical properties in fused deposition modeling (FDM) using PETG. Applied Composite Materials 2021, 28 (6), 1799-1828.
11.Penumakala, P. K.; Santo, J.; Thomas, A., A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering 2020, 201, 108336.
12.Szust, A.; Adamski, G., Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints. Engineering Failure Analysis 2022, 132, 105932.
13.Sharafi, S.; Santare, M.; Gerdes, J.; Advani, S., A review of factors that influence the fracture toughness of extrusion-based additively manufactured polymer and polymer composites. Additive Manufacturing 2021, 38, 101830.
14.Swallowe, G. M., Mechanical Properties and Testing of Polymers: an A–Z reference. Springer Science & Business Media: 1999; Vol. 3.
15.Sheela, U. B.; Usha, P. G.; Joseph, M. M.; Melo, J. S.; Nair, S. T. T.; Tripathi, A., 3D printing in dental implants. 3D Printing in Medicine and Surgery 2021, 83-104.
16.Oladapo, B. I.; Zahedi, S. A.; Ismail, S. O.; Omigbodun, F. T., 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material-A review. Colloids and Surfaces B: Biointerfaces 2021, 203, 111726.
17.Zhao, Y.; Zhao, K.; Li, Y.; Chen, F., Mechanical characterization of biocompatible PEEK by FDM. Journal of Manufacturing Processes 2020, 56, 28-42.
電子全文 電子全文(網際網路公開日期:20240720)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊