跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴威丞
研究生(外文):Wei-Cheng Lai
論文名稱:廢污水對小琉球沿岸底棲生物影響
論文名稱(外文):Effects of wastewater on coastal benthos of Xiaoliuqiu
指導教授:劉莉蓮
指導教授(外文):Liu,Li-Lian
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:83
中文關鍵詞:小琉球生活污水藻類底棲無脊椎動物碳氮穩定同位素
外文關鍵詞:Xiaoliuqiuwastewateralgaebenthic invertebratesstable carbonand nitrogen isotopes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類日常生活和事業活動都會用到水資源,使用後的排放水依用途分為廢水和污水,廢水係指事業所產生含有污染物之水,污水係指事業以外所產生含有污染物之水。小琉球為台灣少數的珊瑚礁島,觀光產業發達遊客眾多,且無典型的工業及農業活動,所以排放水大多是遊客及居民生活產生之污水。生活污水如未經妥善處理排放至海中,會增加海水中的營養鹽,嚴重時可能使海域優養化、食物鏈改變、棲地退化、珊瑚白化、並造成生物死亡等現象發生。由於小琉球島上污水處理設施並未完善,因此有經過污水處理設施處理的放流水及未經處理的排放水都會排入沿岸海域,並對沿岸生物產生影響,本研究即對此進行探討;由於放流水及未經處理的排放水不易區分,所以在此統一稱之為「生活污水」。本論文透過調查生活污水排放情形、水質測定及碳 (δ13C)、氮 (δ15N)穩定同位素分析,探討排放入海的生活污水是否對小琉球沿岸底棲生物產生影響。調查樣點包括小琉球兩處潮間帶及十處亞潮帶。調查結果顯示,小琉球週遭有生活污水由排放管流入沿岸,這些生活污水會影響潮間帶的營養鹽濃度化;穩定同位素分析的結果則顯示,潮間帶污水區的腸滸苔、黃寶螺等物種之氮同位素值高於對照區和亞潮帶;由底棲生物體內δ15N值的改變推測,杉福潮間帶生活污水的影響範圍超過120m,而亞潮帶生物受生活污水的影響相對輕微。
Water resource is necessary to human daily life and business activities. The discharged water after use is called wastewater. Xiaoliuqiu is one of the few coral reef islands in Taiwan with many tourists. There are no typical industrial and agricultural activities here. Hence, tourists and residents generate the discharged water. Wastewater discharged into the sea without proper treatment will increase nutrients in the sea water, which may cause eutrophication, change in the food chain, habitat degradation, coral bleaching, and death of organisms in severe cases. Because of the lack of well-established wastewater treatment facilities on the island, wastewater discharged into the coastal waters may impact the inhabiting organisms. Because of this, we investigated whether the wastewater discharged into the sea affects the benthic organisms along the Xiaoliuqiu coast. Since it is challenging to distinguish treated and non-treated wastewater, it is named wastewater here. The work included the investigation of wastewater discharge, water quality measurement, and stable isotope analyses of carbon (δ13C) and nitrogen (δ15N) from benthic organisms. Sample sites had two intertidal zones and ten subtidal zones in Xiaoliuqiu. The results showed that wastewater discharged into the shoreline around Xiaoliuqiu would affect the concentration of nutrients in the intertidal zone. Stable isotope analyses showed that the nitrogen isotope values of Ulva intestinalis and Monetaria moneta in the intertidal polluted area were higher than those of the control and the subtidal regions. From the changes in δ15N values of benthic organisms, it was estimated that wastewater in the intertidal zone of Shanfu had an impact range of more than 120 m. In contrast, the subtidal organisms were relatively unaffected by wastewater.
論文審定書 i
謝辭 ii
摘要 iv
圖次 viii
表次 ix
第一章 前言 1
1.1生活污水排放 1
1.2 碳氮穩定同位素在生態研究上的應用 3
1.3小琉球沿海環境 4
第二章 材料與方法 8
2.1樣點概況 8
2.2生活污水排放調查 9
2.3水質分析 10
2.4碳氮穩定同位素分析樣本採集 11
2.5碳氮穩定同位素分析樣本前處理 12
2.6穩定同位素分析 13
2.7資料分析 14
第三章 結果 15
3.1生活污水排放調查 15
3.2水質分析 15
3.3生物樣本碳、氮穩定同位素分析結果 16
第四章 討論 21
4.1生活污水排放 21
4.2 底棲生物碳、氮穩定同位素分析比較 23
4.3 污水影響小琉球沿岸海域的範圍 28
第五章 結論與建議 31
第六章 參考文獻 63
汪兆剛(2021)。小琉球海域珊瑚群聚之研究。(碩士論文。國立高雄科技大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/54qbv8。
吳靖穎(2021)。龜山島淺海熱泉底棲生物群聚食階動態研究。(博士論文。國立中山大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5778b6。
吳貞誼(2004)。人為營養鹽輸入對墾丁沿岸大型海藻群集之影響。(碩士論文。國立中興大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/gzfwpk。
張致銜(2010)。綠島潮間帶項鍊蟹守螺生物學之研究。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/me6v4q。
葉博澤(2023)。台灣文蛤池養殖文蛤的食物來源研究。﹝碩士論文。國立中山大學﹞
張水鍇、劉莉蓮、樊同雲、廖德裕 (2019)。108年琉球鄉海洋社區三生永續發展整合計畫。屏東縣政府。
張水鍇、劉莉蓮、張懿、樊同雲、吳宗孟、李承祿、陳柏年 (2022)。111年小琉球海洋保護區近岸魚類與關鍵生物調查和復育。屏東縣政府。
張水鍇,劉莉蓮,廖德裕,張懿 (2021a)。 小琉球海洋保護區近岸魚類與底棲生態調查與管理。屏東縣政府。
張水鍇、劉莉蓮、樊同雲、趙世民、野澤洋耕 (2021b)。110年琉球鄉海洋社區三生永續發展整合計畫。屏東縣政府。
屏東縣政府 (2019)。全國水環境改善計畫【屏東縣琉球鄉杉板灣及中澳沙灘聚落式污水處理設施工程-整體計畫工作計畫書】。經濟部。
屏東縣政府 (2022)。全國水環境改善計畫【屏東縣琉球鄉大福村聚落式污水處理設施 興建工程 整體計畫工作計畫書】。經濟部。
高雄市政府 (2020)。全國水環境改善計畫【愛河水環境改善計畫-中區污水處理廠功能提升計畫-東沙環礁國家公園 (旗津區中興里)水環境改善】經濟部。
聯聖工程顧問股份有限公司 (2018)。107琉球鄉生活污水排放水質監測評估計畫。屏東縣政府。
彭宗仁、劉滄棽、林幸助(2006)。穩定同位素在農業及生態環境上之應用。台灣農業研究,55 (2),79-90。
劉滄棽(2017)。穩定同位素在臺灣農業與生態研究之應用。農政與濃情。
台灣自來水公司,2022,〈節省水資源 玩得更開心〉,台灣自來水公司屏東區管理處:https://www.water.gov.tw/dist13/Subject/Detail/69180?nodeId=7686,檢索日期: 2023 年 2 月 10 日。
全國法規資料庫,2023a,水污染防治法,法務部,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040001,檢索日期: 2023 年 2 月 10 日。
全國法規資料庫,2023b,海域環境分類及海洋環境品質標準,法務部,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040029,檢索日期: 2023 年 2 月 10 日。
李卉婷,2022,〈遊客太多送水量不足 小琉球頭一回啟動分區供水〉,中央通訊社,https://www.cna.com.tw/news/aloc/202207230096.aspx,檢索日期: 2023 年 2 月 10 日。
行政院農業委員會漁業署,2021,〈屏東縣-琉球水產動植物繁殖保育區〉,行政院農業委員會漁業署:https://www.fa.gov.tw/view.php?theme=web_structure&id=436,檢索日期: 2023 年 2 月 10 日。
行政院海洋委員會海洋保育署,2022,〈油污事件後小琉球海龜族群空拍監測調查計畫〉,行政院海洋委員會海洋保育署: https://www.oca.gov.tw/ch/home.jsp?id=220&parentpath=0,2,219&mcustomize=research_view.jsp&dataserno=202201130046,檢索日期: 2023 年 2 月 10 日。
姚秋如,2022,〈野生哺乳動物如何覓食?牠們有什麼生態習性?讓專家研究、研究!〉,博學多文 - 國立自然科學博物館:https://epub.nmns.edu.tw/d414-1/,檢索日期: 2023 年 2 月 10 日。
交通部中央氣象局,2023,交通部中央氣象局:https://www.cwb.gov.tw/V8/C/,檢索日期: 2023 年 2 月 10 日。
交通部統計查詢網,2023,交通部統計查詢網:whttps://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100,檢索日期: 2023 年 2 月 10 日。
潮琉生態保育網,2023,潮琉生態保育網:https://liuchiu-intertidal.tw/index.php,檢索日期: 2023 年 2 月 10 日。
林慧貞,2022,〈遊客年破百萬、今夏首度限水,小琉球遊客「總量管制」可能嗎?〉,報導者:https://www.twreporter.org/a/xiao-liuqiu-total-amount-control-issue,檢索日期: 2023 年 2 月 10 日。
張水鍇、陳映竹,2020,〈遭觀光「踩踏」的小琉球潮間帶 保育區管理體制需強化〉,環境資訊中心:https://e-info.org.tw/node/223328,檢索日期: 2023 年 2 月 10 日。
屏東縣琉球鄉公所,2023,屏東縣琉球鄉公所:https://www.pthg.gov.tw/liuchiu/Default.aspx,檢索日期: 2023 年 2 月 10 日。
屏東縣政府傳播暨國際事務處,2022,〈琉球鄉生活污水處理最後一哩路 大福聚落式污水處理設施開工〉,屏東縣政府傳播暨國際事務處:https://www.pthg.gov.tw/plantou/News_Content.aspx?n=B666B8BE5F183769&s=92FD5F16E0911A29,檢索日期: 2023 年 2 月 10 日。
海洋國家公園管理處全球資訊網,2023,東沙環礁國家公園簡介: https://www.marine.gov.tw/dongsha/zh-tw/intro,檢索日期: 2023 年 2 月 10 日。
Abaya, L. M., Wiegner, T. N., Beets, J. P., Colbert, S. L., Carlson, K. a. M., & Kramer, K. L. (2018). Spatial distribution of sewage pollution on a Hawaiian coral reef. Marine Pollution Bulletin, 130, 335-347. https://doi.org/https://doi.org/10.1016/j.marpolbul.2018.03.028
Abrantes, K., & Sheaves, M. (2008). Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuarine, Coastal and Shelf Science, 80(3), 401-412. https://doi.org/https://doi.org/10.1016/j.ecss.2008.09.009
Adrian, M. H. D., & Rasmussen, J. B. (2002). Quantifying Assimilation of Sewage-Derived Organic Matter by Riverine Benthos. Ecological Applications, 12(2), 511-520. https://doi.org/10.2307/3060959
Aguiar, D. K., Wiegner, T. N., Colbert, S. L., Burns, J., Abaya, L., Beets, J., Couch, C., Stewart, J., Panelo, J., Remple, K., & Nelson, C. (2023). Detection and impact of sewage pollution on South Kohala''s coral reefs, Hawai‘i. Marine Pollution Bulletin, 188, 114662. https://doi.org/https://doi.org/10.1016/j.marpolbul.2023.114662
Arévalo, R., Pinedo, S., & Ballesteros, E. (2007). Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: Descriptive study and test of proposed methods to assess water quality regarding macroalgae. Marine Pollution Bulletin, 55(1), 104-113. https://doi.org/https://doi.org/10.1016/j.marpolbul.2006.08.023
Becherucci, M. E., Jaubet, M. L., Saracho Bottero, M. A., Llanos, E. N., Elías, R., & Garaffo, G. V. (2018). Rapid sewage pollution assessment by means of the coverage of epilithic taxa in a coastal area in the SW Atlantic. Science of The Total Environment, 628-629, 826-834. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.02.024
Bell, P. R. F. (1992). Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Research, 26(5), 553-568. https://doi.org/https://doi.org/10.1016/0043-1354(92)90228-V
Borja, A., Belzunce, M., Garmendia, J., Rodriguez, J. G., Solaun, O., & Zorita, I. (2011). Impact of Pollutants on Coastal and Benthic Marine Communities. In. https://doi.org/10.2174/978160805121210165
Brasseur, L., Caulier, G., Lepoint, G., Gerbaux, P., & Eeckhaut, I. (2018). Echinometra mathaei and its ectocommensal shrimps: the role of sea urchin spinochrome pigments in the symbiotic association. Scientific Reports, 8(1), 17540. https://doi.org/10.1038/s41598-018-36079-8
Briand, M. J., Bonnet, X., Guillou, G., & Letourneur, Y. (2016). Complex food webs in highly diversified coral reefs: Insights from δ13C and δ15N stable isotopes. Food Webs, 8, 12-22. https://doi.org/https://doi.org/10.1016/j.fooweb.2016.07.002
Brown, V. B., Davies, S. A., & Synnot, R. N. (1990). Long-term Monitoring of the Effects of Treated Sewage Effluent on the Intertidal Macroalgal Community Near Cape Schanck, Victoria, Australia. 33(1), 85-98. https://doi.org/doi:10.1515/botm.1990.33.1.85
Campbell, A. M., Fleisher, J., Sinigalliano, C., White, J. R., & Lopez, J. V. (2015). Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. Microbiologyopen, 4(3), 390-408. https://doi.org/10.1002/mbo3.245
Casciotti, K. L., Trull, T. W., Glover, D. M., & Davies, D. (2008). Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen. Deep Sea Research Part II: Topical Studies in Oceanography, 55(14), 1661-1672. https://doi.org/https://doi.org/10.1016/j.dsr2.2008.04.017
Connolly, R. M., Gorman, D., Hindell, J. S., Kildea, T. N., & Schlacher, T. A. (2013). High congruence of isotope sewage signals in multiple marine taxa. Marine Pollution Bulletin, 71(1), 152-158. https://doi.org/https://doi.org/10.1016/j.marpolbul.2013.03.021
Costanzo, S. D., O''donohue, M. J., & Dennison, W. C. (2000). GRACILARIA EDULIS (RHODOPHYTA) AS A BIOLOGICAL INDICATOR OF PULSED NUTRIENTS IN OLIGOTROPHIC WATERS. Journal of Phycology, 36(4), 680-685. https://doi.org/https://doi.org/10.1046/j.1529-8817.2000.99180.x
Cresson, P., Ruitton, S., & Harmelin-Vivien, M. (2014). Artificial reefs do increase secondary biomass production: mechanisms evidenced by stable isotopes. Marine Ecology Progress Series, 509, 15-26. https://www.int-res.com/abstracts/meps/v509/p15-26/
Dailer, M. L., Ramey, H. L., Saephan, S., & Smith, C. M. (2012). Algal δ15N values detect a wastewater effluent plume in nearshore and offshore surface waters and three-dimensionally model the plume across a coral reef on Maui, Hawai‘i, USA. Marine Pollution Bulletin, 64(2), 207-213. https://doi.org/https://doi.org/10.1016/j.marpolbul.2011.12.004
Davis, J. P., Pitt, K. A., Connolly, R. M., & Fry, B. (2015). Community structure and dietary pathways for invertebrates on intertidal coral reef flats. Food Webs, 3, 7-16. https://doi.org/https://doi.org/10.1016/j.fooweb.2015.04.001
Derse, E., Knee, K. L., Wankel, S. D., Kendall, C., Berg, C. J., & Paytan, A. (2007). Identifying Sources of Nitrogen to Hanalei Bay, Kauai, Utilizing the Nitrogen Isotope Signature of Macroalgae. Environmental Science & Technology, 41(15), 5217-5223. https://doi.org/10.1021/es0700449
Diaz-Pulido, G., Cornwall, C., Gartrell, P., Hurd, C., & Tran, D. V. (2016). Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs, 35(4), 1327-1341. https://doi.org/10.1007/s00338-016-1481-5
Diaz, R. J., & Rosenberg, R. (2008). Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 321(5891), 926-929. https://doi.org/doi:10.1126/science.1156401
Duarte, C. M. (1995). Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 41(1), 87-112. https://doi.org/10.1080/00785236.1995.10422039
Evelyn, F. C., Marta, R., & Robert, A. K., III. (2006). Temporal and spatial scaling of planktonic responses to nutrient inputs into a subtropical embayment. Marine Ecology Progress Series, 324, 19-35. https://www.int-res.com/abstracts/meps/v324/p19-35/
Fey, P., Parravicini, V., Bănaru, D., Dierking, J., Galzin, R., Lebreton, B., Meziane, T., Polunin, N. V. C., Zubia, M., & Letourneur, Y. (2021). Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web. Scientific Reports, 11(1), 20950. https://doi.org/10.1038/s41598-021-00348-w
Gappa, J. J. L., Tablado, A., & Magaldi, N. H. (1990). Influence of sewage pollution on a rocky intertidal community dominated by the mytilid Brachidontes rodriguezi. Marine Ecology Progress Series, 63(2/3), 163-175. http://www.jstor.org/stable/24844613
Godinez-Espinosa, S., Raoult, V., Smith, T. M., Gaston, T. F., Williamson, J. E., & Bishop, M. (2023). Functional roles of coral reef primary producers examined with stable isotopes. Marine and Freshwater Research, 74(7), 601-613. https://doi.org/10.1071/mf22103
Graniero, L. E., Grossman, E. L., & O''Dea, A. (2016). Stable isotopes in bivalves as indicators of nutrient source in coastal waters in the Bocas del Toro Archipelago, Panama. PeerJ, 4, e2278. https://doi.org/10.7717/peerj.2278
Greenwood, N. D. W., Sweeting, C. J., & Polunin, N. V. C. (2010). Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C. Coral Reefs, 29(3), 785-792. https://doi.org/10.1007/s00338-010-0626-1
Heaton, T. H. E. (1986). Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review. Chemical Geology: Isotope Geoscience section, 59, 87-102. https://doi.org/https://doi.org/10.1016/0168-9622(86)90059-X
Hicks, K. A., Loomer, H. A., Fuzzen, M. L. M., Kleywegt, S., Tetreault, G. R., McMaster, M. E., & Servos, M. R. (2017). δ15N tracks changes in the assimilation of sewage-derived nutrients into a riverine food web before and after major process alterations at two municipal wastewater treatment plants. Ecological Indicators, 72, 747-758. https://doi.org/https://doi.org/10.1016/j.ecolind.2016.09.011
Hindell, J. S., & Quinn, G. P. (2000). Effects of sewage effluent on the population structure of Brachidontes rostratus (Mytilidae) on a temperate intertidal rocky shore. Marine and Freshwater Research, 51(6), 543-551. https://doi.org/10.1071/MF99130
Hughes, T., Graham, N., Jackson, J., Mumby, P., & Steneck, R. (2010). Rising to the challenge of sustaining coral reef resilience. Trends in ecology & evolution, 25, 633-642. https://doi.org/10.1016/j.tree.2010.07.011
Huguenin, L., Lalanne, Y., De Casamajor, M. N., Gorostiaga, J. M., Quintano, E., Salerno, M., & Monperrus, M. (2019). Impact of wastewater treatment plant discharges on macroalgae and macrofauna assemblages of the intertidal rocky shore in the southeastern Bay of Biscay. Continental Shelf Research, 181, 34-49. https://doi.org/10.1016/j.csr.2019.04.014
Johannes, R. E. (1975). Chapter 2. Pollution and Degradation of Coral Reef Communities. In E. J. F. Wood & R. E. Johannes (Eds.), Elsevier Oceanography Series (Vol. 12, pp. 13-51). Elsevier. https://doi.org/https://doi.org/10.1016/S0422-9894(08)71107-3
Kang, C.-K., Park, H. J., Choy, E. J., Choi, K.-S., Hwang, K., & Kim, J.-B. (2015). Linking Intertidal and Subtidal Food Webs: Consumer-Mediated Transport of Intertidal Benthic Microalgal Carbon. PLOS ONE, 10(10), e0139802. https://doi.org/10.1371/journal.pone.0139802
Kennish M. J., (1998), Pollution impacts on marine biotic communities CRC Press 310 pp.
Kolasinski, J., Nahon, S., Rogers, K., Chauvin, A., Bigot, L., & Frouin, P. (2016). Stable isotopes reveal spatial variability in the trophic structure of a macro-benthic invertebrate community in a tropical coral reef. Rapid Communications in Mass Spectrometry, 30(3), 433-446. https://doi.org/https://doi.org/10.1002/rcm.7443
Kotta, J., & Möller, T. (2014). Linking nutrient loading, local abiotic variables, richness and biomasses of macrophytes, and associated invertebrate species in the north-eastern Baltic Sea. Estonian Journal of Ecology, 63, 145. https://doi.org/10.3176/eco.2014.3.03
Lachs, L., Johari, N. A. M., Le, D. Q., Safuan, C. D. M., Duprey, N. N., Tanaka, K., Hong, T. C., Ory, N. C., Bachok, Z., Baker, D. M., Kochzius, M., & Shirai, K. (2019). Effects of tourism-derived sewage on coral reefs: Isotopic assessments identify effective bioindicators. Marine Pollution Bulletin, 148, 85-96. https://doi.org/https://doi.org/10.1016/j.marpolbul.2019.07.059
Lai, S., Loke, L. H. L., Bouma, T. J., & Todd, P. (2017). Biodiversity surveys and stable isotope analyses reveal key differences in intertidal assemblages between tropical seawalls and rocky shores. Marine Ecology Progress Series, 587. https://doi.org/10.3354/meps12409
Lapointe, B., Brewton, R., Herren, L., Porter, J., & Hu, C. (2019). Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Marine Biology, 166. https://doi.org/10.1007/s00227-019-3538-9
Lapointe, B. E., & Bedford, B. J. (2011). Stormwater nutrient inputs favor growth of non-native macroalgae (Rhodophyta) on O’ahu, Hawaiian Islands. Harmful Algae, 10(3), 310-318. https://doi.org/https://doi.org/10.1016/j.hal.2010.11.004
Lapointe, B. E., Herren, L. W., & Paule, A. L. (2017). Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA. Harmful Algae, 70, 1-22. https://doi.org/10.1016/j.hal.2017.09.005
Lapointe, B. E., Tewfik, A., & Phillips, M. (2021). Macroalgae reveal nitrogen enrichment and elevated N:P ratios on the Belize Barrier Reef. Marine Pollution Bulletin, 171, 112686. https://doi.org/https://doi.org/10.1016/j.marpolbul.2021.112686
Lin, H.-J., Dai, X.-X., Shao, K.-T., Su, H.-M., Lo, W.-T., Hsieh, H.-L., Fang, L.-S., & Hung, J.-J. (2006). Trophic structure and functioning in a eutrophic and poorly flushed lagoon in southwestern Taiwan. Marine Environmental Research, 62(1), 61-82. https://doi.org/https://doi.org/10.1016/j.marenvres.2006.03.003
Lin, H.-J., Kao, W.-Y., & Wang, Y.-T. (2007). Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuarine, Coastal and Shelf Science, 73(3), 527-537. https://doi.org/https://doi.org/10.1016/j.ecss.2007.02.013
Lin, H.-J., Wu, C. Y., Kao, S.-J. I., Kao, W.-Y., & Meng, P.-J. (2007). Mapping anthropogenic nitrogen through point sources in coral reefs using δ15N in macroalgae. Marine Ecology-progress Series - MAR ECOL-PROGR SER, 335, 95-109. https://doi.org/10.3354/meps335095
Liu, K.-K., & Kaplan, I. R. (1989). The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnology and Oceanography, 34(5), 820-830. https://doi.org/https://doi.org/10.4319/lo.1989.34.5.0820
Lui, H.-K., Liu, M.-Y., Lin, H.-C., Tseng, H.-C., Liu, L.-L., Wang, F.-Y., Hou, W.-P., Chang, R., & Chen, C.-T. A. (2021). Hydrogeochemistry and Acidic Property of Submarine Groundwater Discharge Around Two Coral Islands in the Northern South China Sea [Original Research]. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.697388
Martinetto, P., Teichberg, M., & Valiela, I. (2006). Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Waquoit Bay, Massachusetts, USA. Marine Ecology-progress Series - MAR ECOL-PROGR SER, 307, 37-48. https://doi.org/10.3354/meps307037
Martínez-Durazo, A., García-Hernández, J., Páez-Osuna, F., Soto-Jiménez, M. F., & Jara-Marini, M. E. (2019). The influence of anthropogenic organic matter and nutrient inputs on the food web structure in a coastal lagoon receiving agriculture and shrimp farming effluents. Science of The Total Environment, 664, 635-646. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.01.343
McClelland, J. W., Valiela, I., & Michener, R. H. (1997). Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnology and Oceanography, 42(5), 930-937. https://doi.org/https://doi.org/10.4319/lo.1997.42.5.0930
Meng, P.-J., Lee, H.-J., Wang, J.-T., Chen, C.-C., Lin, H.-J., Tew, K., & Hsieh, W.-J. (2008). A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environmental pollution (Barking, Essex : 1987), 156, 67-75. https://doi.org/10.1016/j.envpol.2007.12.039
Michener, R. H., & Kaufman, L. (2007). Stable Isotope Ratios as Tracers in Marine Food Webs: An Update. In Stable Isotopes in Ecology and Environmental Science (pp. 238-282). https://doi.org/10.1002/9780470691854.ch9
Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48(5), 1135-1140. https://doi.org/https://doi.org/10.1016/0016-7037(84)90204-7
Morrissey, C. A., Boldt, A., Mapstone, A., Newton, J., & Ormerod, S. J. (2012). Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia, 700(1), 231-244. https://doi.org/10.1007/s10750-012-1233-7
Oakes, J. M., & Eyre, B. D. (2015). Wastewater nitrogen and trace metal uptake by biota on a high-energy rocky shore detected using stable isotopes. Marine Pollution Bulletin, 100(1), 406-413. https://doi.org/https://doi.org/10.1016/j.marpolbul.2015.08.013
Olsen, Y., Fox, S., Teichberg, M., Otter, M., & Valiela, I. (2011). δ15N and δ13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass. Marine Ecology Progress Series, 421, 83-96. https://doi.org/10.3354/meps08900
Olsen, Y. S., Fox, S. E., Kinney, E. L., Teichberg, M., & Valiela, I. (2010). Differences in urbanization and degree of marine influence are reflected in δ13C and δ15N of producers and consumers in seagrass habitats of Puerto Rico. Marine Environmental Research, 69(3), 198-206. https://doi.org/https://doi.org/10.1016/j.marenvres.2009.10.005
Owens, N. J. P. (1988). Natural Variations in 15N in the Marine Environment. In (pp. 389-451). https://doi.org/10.1016/s0065-2881(08)60077-2
Park, S. R., Kim, S., Kim, Y. K., Kang, C.-K., & Lee, K.-S. (2016). Photoacclimatory Responses of Zostera marina in the Intertidal and Subtidal Zones. PLOS ONE, 11(5), e0156214. https://doi.org/10.1371/journal.pone.0156214
Peterson, B. J. (1999). Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica, 20(4), 479-487. https://doi.org/https://doi.org/10.1016/S1146-609X(99)00120-4
Peterson, B. J., & Fry, B. (1987). STABLE ISOTOPES IN ECOSYSTEM STUDIES. Annual Review of Ecology and Systematics, 18(1), 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
Pitt, K. A., Connolly, R. M., & Maxwell, P. (2009). Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades. Mar Pollut Bull, 58(4), 573-580. https://doi.org/10.1016/j.marpolbul.2008.11.016
Reopanichkul, P., Carter, R. W., Worachananant, S., & Crossland, C. J. (2010). Wastewater discharge degrades coastal waters and reef communities in southern Thailand. Marine Environmental Research, 69(5), 287-296. https://doi.org/https://doi.org/10.1016/j.marenvres.2009.11.011
Ribas-Deulofeu, L., Denis, V., De Palmas, S., Kuo, C.-Y., Hsieh, H. J., & Chen, C. A. (2016). Structure of Benthic Communities along the Taiwan Latitudinal Gradient. PLOS ONE, 11(8), e0160601. https://doi.org/10.1371/journal.pone.0160601
Risk, M. J., Lapointe, B. E., Sherwood, O. A., & Bedford, B. J. (2009). The use of δ15N in assessing sewage stress on coral reefs. Marine Pollution Bulletin, 58(6), 793-802. https://doi.org/https://doi.org/10.1016/j.marpolbul.2009.02.008
Rodríguez-Barreras, R., Cuevas, E., Cabanillas-Terán, N., & Branoff, B. (2016). Understanding trophic relationships among Caribbean sea urchins. Rev Biol Trop, 64(2), 837-848. https://doi.org/10.15517/rbt.v64i2.19366
Rosset, S., Wiedenmann, J., Reed, A. J., & D''Angelo, C. (2017). Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull, 118(1-2), 180-187. https://doi.org/10.1016/j.marpolbul.2017.02.044
Sardenne, F., Bodin, N., Barret, L., Blamey, L., Govinden, R., Gabriel, K., Mangroo, R., Munaron, J.-M., Le Loc’h, F., Bideau, A., Le Grand, F., Sabino, M., Bustamante, P., & Rowat, D. (2021). Diet of spiny lobsters from Mahé Island reefs, Seychelles inferred by trophic tracers. Regional Studies in Marine Science, 42, 101640. https://doi.org/https://doi.org/10.1016/j.rsma.2021.101640
Scherner, F., Horta, P. A., de Oliveira, E. C., Simonassi, J. C., Hall-Spencer, J. M., Chow, F., Nunes, J. M., & Pereira, S. M. (2013). Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull, 76(1-2), 106-115. https://doi.org/10.1016/j.marpolbul.2013.09.019
Sharp, Z. (2005). Principles of Stable Isotope Geochemistry.Pearson/Prentice Hall, pp. 344.
Shahidul Islam, M., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48(7), 624-649. https://doi.org/https://doi.org/10.1016/j.marpolbul.2003.12.004
Sturbois, A., Riera, P., Desroy, N., Brébant, T., Carpentier, A., Ponsero, A., & Schaal, G. (2022). Spatio-temporal patterns in stable isotope composition of a benthic intertidal food web reveal limited influence from salt marsh vegetation and green tide. Marine Environmental Research, 175, 105572. https://doi.org/https://doi.org/10.1016/j.marenvres.2022.105572
Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J., & Bergmann, M. (2016). Regional- and local-scale variations in benthic megafaunal composition at the Arctic deep-sea observatory HAUSGARTEN. Deep Sea Research Part I: Oceanographic Research Papers, 108, 58-72. https://doi.org/https://doi.org/10.1016/j.dsr.2015.12.009
Teichberg, M., Martinetto, P., & Fox, S. (2012). Bottom-Up Versus Top-Down Control of Macroalgal Blooms. In (Vol. 219). https://doi.org/10.1007/978-3-642-28451-9_21
UC Davis Stable Isotope Facility, 2023, 〈13C and 15N Analysis of Solids by EA-IRMS〉: https://stableisotopefacility.ucdavis.edu/carbon-and-nitrogen-solids, retrieval date: 2023.02.10
Udy, J. W., Fellows, C. S., Bartkow, M. E., Bunn, S. E., Clapcott, J. E., & Harch, B. D. (2006). Measures of Nutrient Processes as Indicators of Stream Ecosystem Health. Hydrobiologia, 572(1), 89-102. https://doi.org/10.1007/s10750-005-9006-1
Valiela, I., Collins, G., Kremer, J., Lajtha, K., Geist, M., Seely, M., Brawley, J., & Sham, C. H. (1997). Nitrogen Loading from Coastal Watersheds to Receiving Estuaries: New Method and Application. Ecological Applications, 7(2), 358-380. https://doi.org/10.2307/2269505
Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D., & Foreman, K. (1997). Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography, 42(5part2), 1105-1118. https://doi.org/https://doi.org/10.4319/lo.1997.42.5_part_2.1105
Vermeulen, S., Sturaro, N., Gobert, S., Bouquegneau, J. M., & Lepoint, G. (2011). Potential early indicators of anthropogenically derived nutrients: a multiscale stable isotope analysis. Marine Ecology Progress Series, 422, 9-22. https://www.int-res.com/abstracts/meps/v422/p9-22/
Vinagre, C., Mendonça, V., Narciso, L., & Madeira, C. (2015). Food web of the intertidal rocky shore of the west Portuguese coast - Determined by stable isotope analysis. Mar Environ Res, 110, 53-60. https://doi.org/10.1016/j.marenvres.2015.07.016
Vinagre, P., Costa, J., Gaspar, R., Borja, A., Marques, J., & Neto, J. M. (2015). Response of macroalgae and macroinvertebrates to anthropogenic disturbance gradients in rocky shores. Ecological Indicators, 61, 850-864. https://doi.org/10.1016/j.ecolind.2015.10.038
Waldron, S., Tatner, P., Jack, I., & Arnott, C. (2001). The Impact of Sewage Discharge in a Marine Embayment: A Stable Isotope Reconnaissance. Estuarine, Coastal and Shelf Science, 52(1), 111-115. https://doi.org/https://doi.org/10.1006/ecss.2000.0731
Wang, F.-Y., & Liu, M.-Y. (2023). Microbial Community Diversity of Coral Reef Sediments on Liuqiu Island, Southwestern Taiwan. Journal of Marine Science and Engineering, 11(1). https://doi.org/10.3390/jmse11010085
Whitehouse, L. N. A., & Lapointe, B. E. (2015). Comparative ecophysiology of bloom-forming macroalgae in the Indian River Lagoon, Florida: Ulva lactuca, Hypnea musciformis, and Gracilaria tikvahiae. Journal of Experimental Marine Biology and Ecology, 471, 208-216. https://doi.org/https://doi.org/10.1016/j.jembe.2015.06.012
Whittier, R. B., & A.I., E.-K. (2014). Human Health And Environmental Risk Ranking of On-site Sewage Disposal Systems for the Hawaiian Islands of Kauai, Molokai, Maui, And Hawai''i.
Wiedenmann, J., D’Angelo, C., Smith, E. G., Hunt, A. N., Legiret, F.-E., Postle, A. D., & Achterberg, E. P. (2013). Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3(2), 160-164. https://doi.org/10.1038/nclimate1661
Wu, J.-Y., Lin, S.-Y., Peng, S.-H., Hung, J.-J., Chen, C.-T. A., & Liu, L.-L. (2021). Isotopic niche differentiation in benthic consumers from shallow-water hydrothermal vents and nearby non-vent rocky reefs in northeastern Taiwan. Progress in Oceanography, 195, 102596. https://doi.org/https://doi.org/10.1016/j.pocean.2021.102596
Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., & Boeckx, P. (2009). Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43(5), 1159-1170. https://doi.org/https://doi.org/10.1016/j.watres.2008.12.048
Yakovis, E., Artemieva, A., Fokin, M., & Varfolomeeva, M. (2012). Intraspecific variation in stable isotope signatures indicates no small-scale feeding interference between a horse mussel and an ascidian. Marine Ecology Progress Series, 467, 113-120. https://doi.org/10.3354/meps09951
Yamamuro, M., Umezawa, Y., & Koike, I. (2001). Seasonality in nutrient concentrations and stable isotope ratios of Halophila ovalis growing on the intertidal flat of SW Thailand. Limnology, 2(3), 199-205. https://doi.org/10.1007/s10201-001-8036-2
Yoshino, K., Tsugeki, N. K., Amano, Y., Hayami, Y., Hamaoka, H., & Omori, K. (2012). Intertidal bare mudflats subsidize subtidal production through outwelling of benthic microalgae. Estuarine, Coastal and Shelf Science, 109, 138-143. https://doi.org/https://doi.org/10.1016/j.ecss.2012.05.021
Zapata-Hernández, G., Sellanes, J., & Muñoz, P. (2022). Stable isotopes reveal overlooked incorporation of diffuse land-based sources of nutrients and organic matter by intertidal communities at Rapa Nui (Easter Island). Marine Pollution Bulletin, 176, 113415. https://doi.org/https://doi.org/10.1016/j.marpolbul.2022.113415
Zavialov, P. O., Kao, R. C., Kremenetskiy, V. V., Peresypkin, V. I., Ding, C. F., Hsu, J. T., Kopelevich, O. V., Korotenko, K. A., Wu, Y. S., & Chen, P. (2012). Evidence for submarine groundwater discharge on the Southwestern shelf of Taiwan. Continental Shelf Research, 34, 18-25. https://doi.org/10.1016/j.csr.2011.11.010
Zheng, X., Como, S., Magni, P., & Huang, L. (2019). Spatiotemporal variation in environmental features and elemental/isotopic composition of organic matter sources and primary producers in the Yundang Lagoon (Xiamen, China). Environ Sci Pollut Res Int, 26(13), 13126-13137. https://doi.org/10.1007/s11356-019-04720-2
電子全文 電子全文(網際網路公開日期:20280825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top