|
1.Singamneni, S., Yifan, L. V., Hewitt, A., Chalk, R., Thomas, W., & Jordison, D. (2019). Additive manufacturing for the aircraft industry: a review. J. Aeronaut. Aerosp. Eng, 8(1), 351-371. 2.Lee, J. Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied materials today, 7, 120-133. 3.Liu, J., Sheng, L., He, Z. Z., Liu, J., Sheng, L., & He, Z. Z. (2019). Liquid metal wheeled 3D-printed vehicle. Liquid Metal Soft Machines: Principles and Applications, 359-372. 4.Ricles, L. M., Coburn, J. C., Di Prima, M., & Oh, S. S. (2018). Regulating 3D-printed medical products. Science translational medicine, 10(461), eaan6521. 5.Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., ... & Fino, P. (2017). Overview on additive manufacturing technologies. Proceedings of the IEEE, 105(4), 593-612. 6.Boschetto, A., & Bottini, L. (2016). Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling. Robotics and Computer-Integrated Manufacturing, 37, 103-114. 7.Valerga, A. P., Batista, M., Salguero, J., & Girot, F. (2018). Influence of PLA filament conditions on characteristics of FDM parts. Materials, 11(8), 1322. 8.Ottman, N., Ruokolainen, L., Suomalainen, A., Sinkko, H., Karisola, P., Lehtimńki, J., ... & Fyhrquist, N. (2019). Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. Journal of allergy and clinical immunology, 143(3), 1198-1206. 9.Conway, K. M., & Pataky, G. J. (2019). Crazing in additively manufactured acrylonitrile butadiene styrene. Engineering Fracture Mechanics, 211, 114-124. 10.Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175, 107147. 11.Ahmed, S. W., Hussain, G., Al-Ghamdi, K. A., & Altaf, K. (2021). Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheet. Journal of Thermoplastic Composite Materials, 34(11), 1577-1596. 12.Bacha, A., Sabry, A. H., & Benhra, J. (2019). Fault Diagnosis in the Field of Additive Manufacturing (3D Printing) Using Bayesian Networks. International Journal of Online & Biomedical Engineering, 15(3). 13.Kadam, V., Kumar, S., Bongale, A., Wazarkar, S., Kamat, P., & Patil, S. (2021). Enhancing surface fault detection using machine learning for 3D printed products. Applied System Innovation, 4(2), 34. 14.Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. (2018). Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Materials & Design, 156, 458-469. 15.Priya, K., & Maheswari, P. U. (2021, November). Deep Learnt Features and Machine Learning Classifier for Texture classification. In Journal of Physics: Conference Series (Vol. 2070, No. 1, p. 012108). IOP Publishing. 16.Delli, U., & Chang, S. (2018). Automated process monitoring in 3D printing using supervised machine learning. Procedia Manufacturing, 26, 865-870. 17.Khadilkar, A., Wang, J., & Rai, R. (2019). Deep learning–based stress prediction for bottom-up SLA 3D printing process. The International Journal of Advanced Manufacturing Technology, 102(5), 2555-2569. 18.Baumgartl, H., Tomas, J., Buettner, R., & Merkel, M. (2020). A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress in Additive Manufacturing, 5(3), 277-285. 19.Pham, G. N., Lee, S. H., Kwon, O. H., & Kwon, K. R. (2018). Anti-3D weapon model detection for safe 3D printing based on convolutional neural networks and D2 shape distribution. Symmetry, 10(4), 90. 20.Katiyar, A., Behal, S., & Singh, J. (2021, March). Automated defect detection in physical components using machine learning. In 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 527-532). IEEE. 21.Garfo, S., Muktadir, M. A., & Yi, S. (2020). Defect detection on 3d print products and in concrete structures using image processing and convolution neural network. Journal of Mechatronics and Robotics, 4(1), 74-84. 22.Chen, W., Zou, B., Huang, C., Yang, J., Li, L., Liu, J., & Wang, X. (2022). The defect detection of 3D-printed ceramic curved surface parts with low contrast based on deep learning. Ceramics International. 23.Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 24.Paraskevoudis, K., Karayannis, P., & Koumoulos, E. P. (2020). Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes, 8(11), 1464. 25.Putra, M. A. P., Chijioke, A. L. A., Verana, M., Kim, D. S., & Lee, J. M. (2022). Efficient 3D Printer Fault Classification Using a Multi-Block 2D-Convolutional Neural Network. 한국통신학회논문지, 47(2), 236-245. 26.Zhou, J., Yang, X., Zhang, L., Shao, S., & Bian, G. (2020). Multisignal VGG19 network with transposed convolution for rotating machinery fault diagnosis based on deep transfer learning. Shock and Vibration, 2020. 27.Kim, H., Lee, H., Kim, J. S., & Ahn, S. H. (2020). Image-based failure detection for material extrusion process using a convolutional neural network. The International Journal of Advanced Manufacturing Technology, 111(5), 1291-1302. 28.Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). 29.Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826). 30.Banadaki, Y., Razaviarab, N., Fekrmandi, H., Li, G., Mensah, P., Bai, S., & Sharifi, S. (2022). Automated Quality and Process Control for Additive Manufacturing using Deep Convolutional Neural Networks. Recent Progress in Materials, 4(1), 1-1. 31.Jin, Z., Zhang, Z., & Gu, G. X. (2020). Automated real‐time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Advanced Intelligent Systems, 2(1), 1900130. 32.Razaviarab, N., Sharifi, S., & Banadaki, Y. M. (2019, March). Smart additive manufacturing empowered by a closed-loop machine learning algorithm. In Nano-, Bio-, Info-Tech Sensors and 3D Systems III (Vol. 10969, pp. 50-57). SPIE. 33.He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 34.He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630-645). Springer, Cham. 35.Ruhi, Z. M., Jahan, S., & Uddin, J. (2021). A Novel Hybrid Signal Decomposition Technique for Transfer Learning Based Industrial Fault Diagnosis. Annals of Emerging Technologies in Computing (AETiC), 5(4), 37-53. 36.He, D., Liu, C., Chen, Y., Jin, Z., Li, X., & Shan, S. (2021). A rolling bearing fault diagnosis method using novel lightweight neural network. Measurement Science and Technology, 32(12), 125102. 37.Zhang, W., Li, X., & Ding, Q. (2019). Deep residual learning-based fault diagnosis method for rotating machinery. ISA transactions, 95, 295-305. 38.Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR. 39.Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 40.Tan, M., & Le, Q. (2021, July). Efficientnetv2: Smaller models and faster training. In International Conference on Machine Learning (pp. 10096-10106). PMLR. 41.Zhou, G., Luo, L., Xu, H., Zhang, X., Guo, H., & Zhao, H. (2022, May). Brick Yourself within 3 Minutes. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 6261-6267). IEEE. 42.Li, B., Wang, Z., Wu, N., Shi, S., & Ma, Q. (2022). Dog nose print matching with dual global descriptor based on Contrastive Learning. arXiv preprint arXiv:2206.00580. 43.Wang, K., Yu, L., Xu, J., Zhang, S., & Qin, J. (2022). Energy consumption intelligent modeling and prediction for additive manufacturing via multisource fusion and inter-layer consistency. Computers & Industrial Engineering, 108720. 44.Available online: https://www.prusa3d.com/product/original-prusa-i3-mk3s-kit-3/ (accessed on 25 May 2023). 45.Available online : https://tw-3dp.com/ (accessed on 25 May 2023). 46.Available online:https://www.sony.com.tw/en/electronics/interchangeable-lens-cameras/ilce-7m3-body-kit (accessed on 25 May 2023). 47.Available online: https://colab.research.google.com/(accessed on 25 May 2023). 48.Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 49.Zhao, X., Wu, Y., Lee, D. L., & Cui, W. (2018). iforest: Interpreting random forests via visual analytics. IEEE transactions on visualization and computer graphics, 25(1), 407-416. 50.Bühlmann, P. (2012). Bagging, boosting and ensemble methods. In Handbook of computational statistics (pp. 985-1022). Springer, Berlin, Heidelberg. 51.Ghojogh, B., & Crowley, M. (2019). The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial. arXiv preprint arXiv:1905.12787. 52.Ganaie, M. A., & Hu, M. (2021). Ensemble deep learning: A review. arXiv preprint arXiv:2104.02395. 53.Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. 54.Wang, F., Li, Z., He, F., Wang, R., Yu, W., & Nie, F. (2019). Feature learning viewpoint of AdaBoost and a new algorithm. IEEE Access, 7, 149890-149899. 55.Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. 56.Anghel, A., Papandreou, N., Parnell, T., De Palma, A., & Pozidis, H. (2018). Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint arXiv:1809.04559. 57.Shi, Y., Li, J., & Li, Z. (2018). Gradient boosting with piece-wise linear regression trees. arXiv preprint arXiv:1802.05640. 58.Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937-1967. 59.Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). 60.Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249. 61.Zounemat-Kermani, M., Batelaan, O., Fadaee, M., & Hinkelmann, R. (2021). Ensemble machine learning paradigms in hydrology: A review. Journal of Hydrology, 598, 126266. 62.Hancock, J., & Khoshgoftaar, T. M. (2021, August). Leveraging lightgbm for categorical big data. In 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService) (pp. 149-154). IEEE. 63.Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., & Asadpour, M. (2020). Boosting methods for multi-class imbalanced data classification: an experimental review. Journal of Big Data, 7(1), 1-47. 64.Zhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12(17), 8654. 65.Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363. 66.Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31. 67.Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of big data, 7(1), 1-45. 68.González, S., García, S., Del Ser, J., Rokach, L., & Herrera, F. (2020). A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Information Fusion, 64, 205-237. 69.Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE access, 7, 53040-53065. 70.Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8(1), 1-74. 71.Wang, X., Chen, C., Yuan, J., & Chen, G. (2020). Color reproduction accuracy promotion of 3D-printed surfaces based on microscopic image analysis. International Journal of Pattern Recognition and Artificial Intelligence, 34(01), 2054004. 72.Li, Z., Zhang, Z., Shi, J., & Wu, D. (2019). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing, 57, 488-495. 73.Amihai, I., Gitzel, R., Kotriwala, A. M., Pareschi, D., Subbiah, S., & Sosale, G. (2018, July). An industrial case study using vibration data and machine learning to predict asset health. In 2018 IEEE 20th Conference on Business Informatics (CBI) (Vol. 1, pp. 178-185). IEEE 74.Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018, July). Machine learning approach for predictive maintenance in industry 4.0. In 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA) (pp. 1-6). IEEE. 75.Jayasudha, M., Elangovan, M., Mahdal, M., & Priyadarshini, J. (2022). Accurate Estimation of Tensile Strength of 3D Printed Parts Using Machine Learning Algorithms. Processes, 10(6), 1158. 76.Gardner, J. M., Hunt, K. A., Ebel, A. B., Rose, E. S., Zylich, S. C., Jensen, B. D., ... & Sauti, G. (2019). Machines as craftsmen: localized parameter setting optimization for fused filament fabrication 3D printing. Advanced Materials Technologies, 4(3), 1800653. 77.Dabbagh, S. R., Ozcan, O., & Tasoglu, S. (2022). Machine learning-enabled optimization of extrusion-based 3D printing. Methods, 206, 27-40.
|