|
[1]K. J. Kuhn, "Moore''s Law Past 32nm: Future Challenges in Device Scaling," in 2009 13th International Workshop on Computational Electronics, 2009: IEEE, pp. 1-6, doi: 10.1109/IWCE.2009.5091124. [2]D. Rathee, M. Kumar, and S. K. Arya, "CMOS development and optimization, scaling issue and replacement with high-k material for future microelectronics," Int. J. Comput. Appl, vol. 8, no. 5, p. 10, 2010, doi: 10.5120/1208-1730. [3]J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015, doi: doi.org/10.1016/j.mser.2014.11.001. [4]K. Yim, Y. Yong, J. Lee, K. Lee, H.-H. Nahm, J. Yoo, C. Lee, C. Seong Hwang, and S. Han, "Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations," NPG Asia Materials, vol. 7, no. 6, pp. e190-e190, 2015, doi: 10.1038/am.2015.57. [5]A. Lüker, "A short history of ferroelectricity," Instituto Superior Técnico Departamento de Física, 2011. [Online]. Available: http://groups.ist.utl.pt/rschwarz/rschwarzgroup_files/Ferroelectrics_files/A%20Short%20History%20of%20Ferroelectricity.pdf. [6]Z. Bi, Z. Zhang, and P. Fan, "Characterization of PZT ferroelectric thin films by RF-magnetron sputtering," in Journal of Physics: Conference Series, 2007, vol. 61, no. 1: IOP Publishing, p. 025, doi: 10.1088/1742-6596/61/1/025. [7]K. J. Choi, M. Biegalski, Y. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. Chen, X. Pan, and V. Gopalan, "Enhancement of ferroelectricity in strained BaTiO3 thin films," Science, vol. 306, no. 5698, pp. 1005-1009, 2004, doi: 10.1126/science.1103218. [8]H. Guo, D. Bao, and Y. Zhang, "Characterization of PZT ferroelectric thin films prepared by a modified sol-gel method," in 2008 IEEE Ultrasonics Symposium, 2008: IEEE, pp. 2130-2133, doi: 10.1109/ULTSYM.2008.0527. [9]M. Okuyama and Y. Hamakawa, "Preparation and basic properties of PbTiO3 ferroelectric thin films and their device applications," Ferroelectrics, vol. 63, no. 1, pp. 243-252, 1985. [Online]. Available: https://doi.org/10.1080/00150198508221406. [10]Z. Fan, J. Chen, and J. Wang, "Ferroelectric HfO2-based materials for next-generation ferroelectric memories," Journal of Advanced Dielectrics, vol. 6, no. 02, p. 1630003, 2016. [Online]. Available: https://doi.org/10.1142/S2010135X16300036. [11]I. H. Lone, J. Aslam, N. R. Radwan, A. H. Bashal, A. F. Ajlouni, and A. Akhter, "Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetism," Nanoscale research letters, vol. 14, no. 1, pp. 1-12, 2019. [Online]. Available: https://doi.org/10.1186/s11671-019-2961-7. [12]M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Mueller, A. Kersch, U. Schroeder, and T. Mikolajick, "Ferroelectricity and antiferroelectricity of doped thin HfO2‐based films," Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015. [Online]. Available: https://doi.org/10.1002/adma.201404531. [13]T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," in 2011 International electron devices meeting, 2011: IEEE, pp. 24.5. 1-24.5. 4, doi: 10.1109/IEDM.2011.6131606. [14]J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, "Ferroelectricity in simple binary ZrO2 and HfO2," Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012. [Online]. Available: https://doi.org/10.1021/nl302049k. [15]S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, "Ferroelectric Hf0. 5Zr0. 5O2 thin films: a review of recent advances," Jom, vol. 71, no. 1, pp. 246-255, 2019. [Online]. Available: https://doi.org/10.1007/s11837-018-3140-5. [16]T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011. [Online]. Available: https://doi.org/10.1063/1.3634052. [17]M. H. Park, H. J. Kim, Y. J. Kim, W. Jeon, T. Moon, and C. S. Hwang, "Ferroelectric properties and switching endurance of Hf0. 5Zr0. 5O2 films on TiN bottom and TiN or RuO2 top electrodes," physica status solidi (RRL)–Rapid Research Letters, vol. 8, no. 6, pp. 532-535, 2014. [Online]. Available: https://doi.org/10.1002/pssr.201409017. [18]B. Y. Kim, S. H. Kim, H. W. Park, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, and D. Shim, "Improved ferroelectricity in Hf0. 5Zr0. 5O2 by inserting an upper HfOxNy interfacial layer," Applied Physics Letters, vol. 119, no. 12, p. 122902, 2021. [Online]. Available: https://doi.org/10.1063/5.0065571. [19]N. Gong and T.-P. Ma, "A study of endurance issues in HfO 2-based ferroelectric field effect transistors: Charge trapping and trap generation," IEEE Electron Device Letters, vol. 39, no. 1, pp. 15-18, 2017, doi: 10.1109/LED.2017.2776263. [20]S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Involvement of Unsaturated Switching in the Endurance Cycling of Si‐doped HfO2 Ferroelectric Thin Films," Advanced Electronic Materials, vol. 6, no. 8, p. 2000264, 2020. [Online]. Available: https://doi.org/10.1002/aelm.202000264. [21]V. Iglesias, M. Porti, M. Nafría, X. Aymerich, P. Dudek, T. Schroeder, and G. Bersuker, "Correlation between the nanoscale electrical and morphological properties of crystallized hafnium oxide-based metal oxide semiconductor structures," Applied physics letters, vol. 97, no. 26, p. 262906, 2010. [Online]. Available: https://doi.org/10.1063/1.3533257. [22]N. Raghavan, K. L. Pey, and K. Shubhakar, "High-κ dielectric breakdown in nanoscale logic devices–Scientific insight and technology impact," Microelectronics Reliability, vol. 54, no. 5, pp. 847-860, 2014. [Online]. Available: https://doi.org/10.1016/j.microrel.2014.02.013. [23]G. Bersuker, D. Heh, C. Young, L. Morassi, A. Padovani, L. Larcher, K. Yew, Y. Ong, D. Ang, and K. Pey, "Mechanism of high-k dielectric-induced breakdown of the interfacial sio 2 layer," in 2010 IEEE International Reliability Physics Symposium, 2010: IEEE, pp. 373-378, doi: 10.1109/IRPS.2010.5488800. [24]K. McKenna and A. Shluger, "The interaction of oxygen vacancies with grain boundaries in monoclinic HfO 2," Applied Physics Letters, vol. 95, no. 22, p. 222111, 2009. [Online]. Available: https://doi.org/10.1063/1.3271184. [25]C. H. Tung, K. L. Pey, L. J. Tang, M. Radhakrishnan, W. H. Lin, F. Palumbo, and S. Lombardo, "Percolation path and dielectric-breakdown-induced-epitaxy evolution during ultrathin gate dielectric breakdown transient," Applied Physics Letters, vol. 83, no. 11, pp. 2223-2225, 2003, doi: 10.1063/1.1611649. [26]A. Ghetti, "Gate oxide reliability: Physical and computational models," in Predictive Simulation of Semiconductor Processing: Springer, 2004, pp. 201-258. [27]H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, "Plasma-assisted atomic layer deposition: basics, opportunities, and challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 5, p. 050801, 2011, doi: 10.1116/1.3609974. [28]A. Batan, A. Franquet, J. Vereecken, and F. Reniers, "Characterisation of the silicon nitride thin films deposited by plasma magnetron," Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 40, no. 3‐4, pp. 754-757, 2008, doi: https://doi.org/10.1002/sia.2730. [29]T. Wittberg, J. Hoenigman, W. Moddeman, C. Cothern, and M. Gulett, "AES and XPS of silicon nitride films of varying refractive indices," Journal of Vacuum Science and Technology, vol. 15, no. 2, pp. 348-352, 1978, doi: https://doi.org/10.1116/1.569544. [30]Y. S. Oh, W. S. Cho, C. S. Kim, D. S. Lim, and D. S. Cheong, "XPS investigation of Si3N4/SiC nanocomposites prepared using a commercial polymer," Journal of the American Ceramic Society, vol. 82, no. 4, pp. 1076-1078, 1999, doi: https://doi.org/10.1111/j.1151-2916.1999.tb01879.x. [31]H.-P. Ma, H.-L. Lu, J.-H. Yang, X.-X. Li, T. Wang, W. Huang, G.-J. Yuan, F. F. Komarov, and D. W. Zhang, "Measurements of microstructural, chemical, optical, and electrical properties of silicon-oxygen-nitrogen films prepared by plasma-enhanced atomic layer deposition," Nanomaterials, vol. 8, no. 12, p. 1008, 2018, doi: https://doi.org/10.3390/nano8121008. [32]H. Guo, X. Tan, and S. Zhang, "In situ TEM study on the microstructural evolution during electric fatigue in 0.7 Pb (Mg1/3Nb2/3) O3–0.3 PbTiO3 ceramic," Journal of Materials Research, vol. 30, no. 3, pp. 364-372, 2015. [Online]. Available: https://www.cambridge.org/core/journals/journal-of-materials-research/article/abs/in-situ-tem-study-on-the-microstructural-evolution-during-electric-fatigue-in-07pbmg13nb23o303pbtio3-ceramic/102BB07683E8FCED1314D91B66118DA3. [33]X. Lou, "Polarization fatigue in ferroelectric thin films and related materials," Journal of Applied Physics, vol. 105, no. 2, p. 024101, 2009, doi: https://doi.org/10.1063/1.3056603. [34]D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics," Reports on Progress in Physics, vol. 61, no. 9, p. 1267, 1998. [Online]. Available: https://iopscience.iop.org/article/10.1088/0034-4885/61/9/002/meta?casa_token=UO50gjVLDO4AAAAA:08D9eQCHrmap4re1MWQkdb5JwgBMA1OXk0S3jICU4Oj9kpaMSUPqGJHRb_cj5k597QGGc6NAqUk. [35]Q. Huang, Z. Chen, M. J. Cabral, F. Wang, S. Zhang, F. Li, Y. Li, S. P. Ringer, H. Luo, and Y.-W. Mai, "Direct observation of nanoscale dynamics of ferroelectric degradation," Nature communications, vol. 12, no. 1, pp. 1-7, 2021. [Online]. Available: https://www.nature.com/articles/s41467-021-22355-1. [36]N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, and J. Wang, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017: IEEE, pp. T230-T231, doi: 10.23919/VLSIT.2017.7998183.
|