|
1.Alzubaidi, L., et al., Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 2021. 8: p. 1-74. 2.Litjens, G., et al., A survey on deep learning in medical image analysis. Medical Image Analysis, 2017. 42: p. 60-88. 3.Arevalo, J., et al., Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 2016. 127: p. 248-257. 4.Gulshan, V., et al., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Jama-Journal of the American Medical Association, 2016. 316(22): p. 2402-2410. 5.Havaei, M., et al., Brain tumor segmentation with deep neural networks. Medical image analysis, 2017. 35: p. 18-31. 6.Singh, S.P., et al., 3D Deep Learning on Medical Images: A Review. Sensors, 2020. 20(18): p. 24. 7.Nie, D., et al. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. 2016. Springer. 8.Mehta, R. and T. Arbel. 3D U-Net for brain tumour segmentation. in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4. 2019. Springer. 9.Mzoughi, H., et al., Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification. Journal of Digital Imaging, 2020. 33(4): p. 903-915. 10.Goodenberger, M.L. and R.B. Jenkins, Genetics of adult glioma. Cancer Genetics, 2012. 205(12): p. 613-621. 11.Baid, U., et al., A novel approach for fully automatic intra-tumor segmentation with 3D U-Net architecture for gliomas. Frontiers in computational neuroscience, 2020: p. 10. 12.Ostrom, Q.T., et al., Adult Glioma Incidence and Survival by Race or Ethnicity in the United States From 2000 to 2014. Jama Oncology, 2018. 4(9): p. 1254-1262. 13.Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology, 2017. 19: p. V1-V88. 14.Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro-Oncology, 2021. 23: p. 1-105. 15.Louis, D.N., et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 2016. 131(6): p. 803-820. 16.Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 2007. 114(2): p. 97-109. 17.Haacke, E.M., et al., Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 2004. 52(3): p. 612-618. 18.Haacke, E.M., et al., Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1. American Journal of Neuroradiology, 2009. 30(1): p. 19-30. 19.Sehgal, V., et al., Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. Journal of Magnetic Resonance Imaging, 2006. 24(1): p. 41-51. 20.Pinker, K., et al., High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: Correlation with positron-emission tomography and histopathologic findings. American Journal of Neuroradiology, 2007. 28(7): p. 1280-1286. 21.Kim, H.S., et al., Added Value and Diagnostic Performance of Intratumoral Susceptibility Signals in the Differential Diagnosis of Solitary Enhancing Brain Lesions: Preliminary Study. American Journal of Neuroradiology, 2009. 30(8): p. 1574-1579. 22.陳彥霖, 定量病灶內磁化率信號方法應用於星狀細胞瘤、腦部轉移腫瘤、與腦膿瘍之分析, in 電機工程學系研究所. 2015, 國立中山大學: 高雄市. p. 60. 23.Chuang, T.C., et al., Intra-tumoral susceptibility signal: a post-processing technique for objective grading of astrocytoma with susceptibility-weighted imaging. Quantitative Imaging in Medicine and Surgery, 2022. 12(1): p. 558-567. 24.Zhuge, Y., et al., Automated glioma grading on conventional MRI images using deep convolutional neural networks. Medical Physics, 2020. 47(7): p. 3044-3053. 25.Sajjad, M., et al., Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science, 2019. 30: p. 174-182. 26.洪思駿, 使用卷積神經網路對星狀細胞瘤進行分級:利用顯影後T1權重影像與磁化率權重影像, in 電機工程學系研究所. 2020, 國立中山大學: 高雄市. p. 62. 27.廖慶安, 利用卷積神經網路對星狀細胞瘤進行分級:探討磁化率權重影像後處理的影響, in 電機工程學系研究所. 2021, 國立中山大學: 高雄市. p. 55. 28.Wang, Y., et al., Artery and vein separation using susceptibility-dependent phase in contrast-enhanced MRA. Journal of Magnetic Resonance Imaging, 2000. 12(5): p. 661-670. 29.Ashburner, J., et al., SPM12 manual. Wellcome Trust Centre for Neuroimaging, London, UK, 2014. 2464: p. 4. 30.Chlap, P., et al., A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 2021. 65(5): p. 545-563. 31.Nalepa, J., M. Marcinkiewicz, and M. Kawulok, Data Augmentation for Brain-Tumor Segmentation: A Review. Frontiers in Computational Neuroscience, 2019. 13: p. 18. 32.Shin, H.-C., et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. in Simulation and Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 3. 2018. Springer. 33.Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer. 34.Çiçek, Ö., et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation. in International conference on medical image computing and computer-assisted intervention. 2016. Springer.
|