跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/22 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭宏鈞
研究生(外文):Hung-Chun Kuo
論文名稱:應用於D-Band之高增益寬頻磁電偶極封裝天線
論文名稱(外文):A Wideband and High Gain Magnetoelectric (ME) Dipole Antenna-in-Package (AiP) for D-Band Applications
指導教授:郭志文郭志文引用關係
指導教授(外文):Kuo, Chih-Wen
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:88
中文關鍵詞:陣列天線封裝天線D-band磁電偶極天線功率分配器基板集合導波管
外文關鍵詞:Antenna arrayantenna-in-package (AiP)D-bandmagnetoelectric (ME) dipolepower divider (PD)substrate integrated waveguide (SIW)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一應用於D-band (110–170 GHz) 頻段並透過BT有機基板實現之低高度、高頻寬及高增益之線性極化磁電偶極封裝天線。首先透過基板集合導波管饋入的方式來進行設計及評估具有背面空腔槽孔之單元天線。該天線被實驗驗證具有寬頻、穩定且寬邊的輻射特性。考量到BT基板內有玻纖編織及樹脂成分,本論文進一步利用4 × 2及4 × 4陣列天線來探討BT基板是否仍然可以操作在超過100 GHz的更大天線面積。藉由適當且良好設計的功率分配器電路,兩陣列天線皆呈現出超過20 GHz的頻寬特性。除此之外,4 × 2及4 × 4兩個陣列天線分別擁有14 dBi 及16.2 dBi 的最大峰值輻射增益。且頻寬、輻射增益及輻射場型在模擬跟量測的結果上皆呈現相當良好一致的吻合。相比其他D-band封裝天線及其基板製造技術,本論文所利用的BT基板製造技術及提出的天線架構具有高競爭力的高增益及寬頻特性。本研究證實了低成本的BT基板仍然可以適用於未來後第五代行動通訊及第六代行動通訊應用的封裝天線製造技術。
This dissertation demonstrates a low-profile, wide bandwidth (BW), and high-gain linear polarization (LP) magnetoelectric (ME) dipole antenna-in-package (AiP) using the BT substrate manufacturing technology applied within 110 to 170 GHz, which is D-band. The single antenna is firstly discussed, which feeding structure is substrate integrated waveguide (SIW). The proposed antenna is verified to exhibit not only a wide BW but also a stable and broadside radiation pattern. To further discuss whether the BT substrate is capable of sustaining larger area size of the antenna operating beyond 100 GHz considering there are fibers weaved with the resin in the BT substrate, 4 × 2 and 4 × 4 array antennas are therefore studied. With proper and well-designed power divider circuits, both the array antennas present an impedance BW larger than 20 GHz. In addition, a maximum peak gain of 14 dBi and 16.2 dBi within the impedance matched band are seen for the 4 × 2 and the 4 × 4 array antennas, respectively. Moreover, the BW, radiation gains, and radiation patterns are all well correlated between simulation and experimental verification. Comparing with other D-band AiPs and their manufacturing technologies, this dissertation demonstrates a competitively high-gain and wideband antenna with the BT substrate technology. This study proves that the low-cost BT substrate is still a good candidate for future B5G and 6G AiP applications.
論文審定書 i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Magnetoelectric (ME) Dipole Antenna 3
1.3 Measurement System for D-band 9
1.4 Dissertation Overview 11
Chapter 2 Unit Antenna Design and Verification 13
2.1 SIW-fed Unit Antenna Design and Performance 13
2.2 Feeding Network 19
2.3 Verification 20
Chapter 3 2 × 2 Subarray Antenna and Probe-Fed Transition Design 26
3.1 Four-Way Slot Coupled SIW Power Divider Circuit 26
3.2 Probe-Fed Transition Design 29
3.3 Subarray Performance 31
Chapter 4 4 × 2 Array Antenna 38
4.1 Two-Way SIW Power Divider Circuit 38
4.2 4 × 2 Array Antenna Design 43
4.3 Structure Analysis 46
4.4 Verification 50
Chapter 5 4 × 4 Array Antenna 55
5.1 Eight-Way SIW Power Divider Circuit 55
5.2 4 × 4 Array Antenna Design 60
5.3 Verification 62
Chapter 6 Conclusion 67
References 69
Vita 75
[1]A. O. Watanabe, M. Ali, S. Y. B. Sayeed, R. R. Tummala and M. R. Pulugurtha, “A Review of 5G Front-End Systems Package Integration,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 11, no. 1, pp. 118-133, Jan. 2021.
[2]X. Gu et al., “Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2975–2984, Jul. 2019.
[3]Hong Yi Kim, Joong Ho Lee, In Sang Song and Chul Soon Park, "Compact LTCC Yagi-Uda type end-fire antenna-in-package for 60 GHz wireless communications," in Proc. MTT-S Int. Microw. Symp. (IMS2014), Tampa, FL, 2014, pp. 1-3.
[4]C. -Y. Ho, S. -C. Hsieh, M. -F. Jhong, C. -C. Wang and C. -Y. Ting, "A 77GHz Antenna-in-Package with Low-Cost Solution for Automotive Radar Applications," in Proc. 2018 IEEE 68th Electron. Compon. Technol.Conf. (ECTC), San Diego, CA, USA, 2018, pp. 191-196.
[5]M. de Kok, A. B. Smolders and U. Johannsen, “A Review of Design and Integration Technologies for D-Band Antennas,” IEEE Open J. Antennas Propag., vol. 2, pp. 746-758, 2021.
[6]Kukutsu N. and Kado Y., “Overview of Millimeter and Terahertz Wave Application Research,” NTT, [Online]. Available: https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200903sf1.html.
[7]J. -B. Doré et al., “Technology Roadmap for Beyond 5G Wireless Connectivity in D-band,” in Proc. 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1-5.
[8]A. Bhutani et al., “122 GHz aperture-coupled stacked patch microstrip antenna in LTCC technology,” in Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), 2016, pp. 1-5.
[9]A. Rashidian, S. Jafarlou, A. Tomkins, K. Law, M. Tazlauanu, and K. Hayashi, “Compact 60 GHz phased-array antennas with enhanced radiation properties in flip-chip BGA packages,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1605–1619, Mar. 2019.
[10]K. -Q. Huang and M. Swaminathan, “Antennas in Glass Interposer for sub-THz Applications,” in Proc. IEEE 71st Electron. Compon. Technol.Conf. (ECTC), 2021, pp. 1150-1155.
[11]A. Watanabe et al., “Leading-edge and ultra-thin 3D glass-polymer 5G modules with seamless Antenna-to-Transceiver signal transmissions,” in Proc. IEEE 68th Electron. Compon. Technol. Conf. (ECTC), May 2018, pp. 2026–2031.
[12]W. T. Khan et al., “A D-Band Micromachined End-Fire Antenna in 130-nm SiGe BiCMOS Technology,” IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2449-2459, June 2015.
[13]B. Zhang, C. Kärnfelt, H. Gulan, T. Zwick and H. Zirath, “A D-Band Packaged Antenna on Organic Substrate with High Fault Tolerance for Mass Production,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 6, no. 3, pp. 359-365, March 2016.
[14]M. Xue, W. Wan, Q. Wang and L. Cao, “Low-Profile Wideband Millimeter-Wave Antenna-in-Package Suitable for Embedded Organic Substrate Package,” IEEE Trans. on Antennas Propag., vol. 69, no. 8, pp. 4401-4411, Aug. 2021.
[15]H.-S. Huang, C.-Y. Ho, C.-C. Chu, S.-C. Hsieh and C.-C. Wang, “Analysis and Optimization of a Multilayer Organic Substrate for mmWave Antenna in Package/Module Application,” in Proc. Int. Microsyst., Packag., Assem. Circuits Technol. Conf. (IMPACT), 2021, pp. 139-142.
[16]J. D. Dunworth et al., “A 28 GHz bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 70–72.
[17]C.-Y. Ho et al., “Antenna array integrated on multilayer organic package for millimeter-wave applications,” in Proc. Electron. Packag. Technol. Conf. (EPTC), 2016, pp. 644-647.
[18]C.-Y. Ho, M.-F. Jhong, P.-C. Pan, C.-Y. Ting and C.-C. Wang, “Antenna-on-package on low-cost organic substrate for 60 GHz wireless communication applications,” in Proc. Int. Conf. Electron. Packag. Technol. (ICEPT), 2017, pp. 192-196.
[19]A. Clavin, “A new antenna feed having equal E and H-plane patterns,” IRE Trans. Antennas Propog., vol.AP-2, pp.113-119, 1954.
[20]A. Clavin, D. A. Huebner, and F. J. Kilburg, “An improved element for use in array antennas,” IEEE Trans. Antennas Propog., vol.AP-22, no.4, pp.521-526. Jul. 1974.
[21]K. M. Luk and H. Wong, “A new wideband unidirectional antenna element,” Int. J. Microw. Opt. Technol., vol. 1, no. 1, pp. 35–44, Jun. 2006.
[22]K. B. Ng, H. Wong, K. K. So, C. H. Chan and K. M. Luk, “60 GHz Plated Through Hole Printed Magneto-Electric Dipole Antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3129-3136, July 2012.
[23]M. Li and K. -M. Luk, “Wideband Magneto-Electric Dipole Antenna for 60-GHz Millimeter-Wave Communications,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 3276-3279, July 2015.
[24]C.A. Balanis, Antenna Theory: Analysis and Design, 4th ed. John Wiley & Sons, Inc., Hoboken, NJ, 2016.
[25]K.-M. Luk and B. Wu, “The Magnetoelectric Dipole—A Wideband Antenna for Base Stations in Mobile Communications,” Proc. IEEE, vol. 100, no. 7, pp. 2297-2307, July 2012.
[26]P. Jin and R. W. Ziolkowski, “Metamaterial-inspired, electrically small Huygens sources,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 501–505, 2010.
[27]Z. Tang and Y. Dong, “A Ka-Band Antenna Array Based on Wide-Beamwidth Magnetoelectric Dipole,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 3, pp. 501-505, March 2022.
[28]J. Sun, A. Li and K. -M. Luk, “A High-Gain Millimeter-Wave Magnetoelectric Dipole Array With Packaged Microstrip Line Feed Network,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 10, pp. 1669-1673, Oct. 2020.
[29]J. D. Kraus, Antennas, McGraw-Hill, New York, 1988, Chapter 13
[30]K. B. Ng and C. H. Chan, “A differentially-fed complementary antenna for WiGig applications,” in Proc. Asia-Pacific Microw. Conf. (APMC), 2013, pp. 313-315.
[31]Q. Zhu, K. B. Ng, C. H. Chan and K. -M. Luk, “Substrate-Integrated-Waveguide-Fed Array Antenna Covering 57–71 GHz Band for 5G Applications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6298-6306, Dec. 2017.
[32]S.-C. Hsieh, F.-C. Chu, C.-Y. Ho, W.-Y. Chen and C.-C. Wang, “mmWave AiP Measurement Turnkey Solution in Millimeter-Wave Wireless Communication Applications,” in Proc. IEEE 70th Electron. Compon. Technol.Conf. (ECTC), 2020, pp. 114-119.
[33]Y. Wu, Z. Hao, Z. Miao, W. Hong and J. Hong, “A 140 GHz High-Efficiency Slotted Waveguide Antenna Using a Low-Loss Feeding Network,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 1, pp. 94-98, Jan. 2020.
[34]D. Deslandes, "Design equations for tapered microstrip-to-Substrate Integrated Waveguide transitions," in Proc. IEEE MTT-S Int. Microw. Symp., Anaheim, CA, USA, 2010, pp. 704-707.
[35]Y.-T. Lin et al., “Extraction of complex permittivity of dielectrics on package from W-band to D-band,” in Proc. IEEE 71st Electron. Compon. Technol. Conf. (ECTC), Jun. 2021, pp. 564–569.
[36]J. Volakis, Antenna Engineering Handbook, 4th ed. New York, NY, USA: McGraw-Hill, 2007.
[37]F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 1, pp. 66–73, Jan. 2005.
[38]S.-C. Hsieh, C.-Y. Ho, C.-C. Wang and F.-C. Chu, "Performance Analysis and Test Solution with Integrated Antenna-in-Package for Millimeter-Wave System," in Proc. IEEE 8th Electro. Syst.-Integr. Technol. Conf. (ESTC), 2020, pp. 1-4.
[39]S. Germain, D. Deslandes, and K. Wu, “Development of substrate integrated waveguide power dividers,” in Proc. Canadian Conf. Electrical and Computer Engineering (CCECE 2003), vol. 3. Montréal, Canada, 2003, pp. 1921–1924.
[40]P. G. Huray, The Foundations of Signal Integrity, Wiley-IEEE press, 2009.
[41]M. -F. Jhong, P. -C. Pan, H. -H. Cheng and C. -C. Wang, "Improving high-speed signal transmission loss by low conductor surface roughness," in Proc. IEEE 17th Electron. Packag. and Technol. Conf. (EPTC), 2015, pp. 1-4.
[42]Lambert (Bert) Simonovich, “Practical Method for Modeling Conductor Surface Roughness Using Close Packing of Equal Spheres”, in Proc. DesignCon 2015, Santa Clara, CA, 2015.
[43]C. Karnfelt, B. Zhang, and H. Zirath, “A QFN packaged grid array antenna in low dielectric constant LTCC for D-band applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jul. 2016, pp. 1–4.
[44]J. Xu, Z. N. Chen, X. Qing, and W. Hong, “140-GHz SIW LTCC antenna array using a large via-fenced and slotted dielectric loading,” in Proc. 7th Eur. Conf. Antennas Propag. (EuCAP), 2013, pp. 2861–2864.
[45]J. Sobolewski and P. Bajurko, “A 120 GHz antenna for LTCC package with via-less contact pads for probe measurements,” in Proc. 13th Eur. Conf. Antennas Propag. (EuCAP), 2019, pp. 1–5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊