跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱嘉
研究生(外文):Yu-Chia Lin
論文名稱:具備自主自癒和可拉伸軟性複合材料之設計與應用
論文名稱(外文):Design and Application of Autonomous Self-healing and Stretchable Soft Composite Materials
指導教授:郭清德
指導教授(外文):Ching-Te Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:96
中文關鍵詞:疏水性柔性複合材料可伸縮自我修復氣動裝置電子皮膚
外文關鍵詞:HydrophobicityFlexible composite materialsStretchableSelf-healingPneumatic devicesElectronic skin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,柔軟且可變形的軟性機器人在各領域備受矚目。與剛性機器人不同,軟性機器人能在複雜環境中靈活彎曲、拉伸和扭曲,這使得軟性機器人與人類或環境互動時更為安全。
然而,軟性機器人在受到較大的外部力量時本質上難以進行修復。儘管學者們致力於開發可自我修復的軟性材料,但製作過程仍然複雜,且可能出現氣泡混入複合材料,進而影響其修復能力。因此,自我修復特性在軟性機器人開發中仍然具有挑戰性,需要進一步進行研究和技術改進。
本研究提出了一簡易製程,改善材料結構不完整性問題。通過化學交聯將Polyborosiloxane (PBS)與Ecoflex混合,開發一具有自我修復能力與良好機械強度之彈性復合材料,且透過等離子表面改性,使奈米銀線成功附著在PBSE上,實現出可撓曲的軟性電子材料。進行導電測試時,在導電率為0.26 S/cm的PBSE基板上,表面切割僅需5分鐘後即可發現燈泡再次亮起。這個結果顯示複合材料PBSE成功地恢復了其導電性,並展示出其自癒能力的優越性。
此外,本研究還將PBSE複合材料應用於氣動驅動手指和電子皮膚的開發。在氣動手指被刺穿後,自我修復時間只需等待一分鐘,即可重新運作。並藉助電容感測器的輔助,當手指進行抓取和移動時,能立即獲得有效的訊號回饋,即電容的相對變化。這些值表明本研究所開發的感測器具有相當高的靈敏度。在電子皮膚的展示中,通過直接施加壓力於壓電片上,內部壓電片能夠將動態力轉換為電壓信號。這種技術可實現對外界壓力和觸摸的感知能力,並且透過燈泡的閃爍方式,使觀察更加直觀明瞭。
綜上所述,本研究成功開發出一具高達1258%拉伸應變能力的PBSE基板,於室溫下自我修復不到半小時,即可重新拉伸至原始長度,並在電子皮膚和氣動驅動方面有廣泛應用潛力。這些成果為軟性機器人領域的發展做出了重要貢獻。
In recent years, flexible and deformable soft robots have garnered significant attention across various fields. Unlike rigid robots, soft robots possess the unique ability to bend, stretch, and twist in complex environments, making them safer for interaction with humans and the environment.
However, soft robots are difficult to repair when subjected to substantial external forces. Despite scholars'' efforts to develop self-healing soft materials, the manufacturing process remains complex, and air bubbles in the composite materials may affect their repair capabilities. Therefore, the self-repairing feature still poses challenges in developing soft robots, necessitating further research and technological improvements.
This study proposed a simple process to address the issue of structural incompleteness in materials. By chemically cross-linking Polyborosiloxane (PBS) with Ecoflex, an elastic composite material with self-repairing capabilities and excellent mechanical strength is developed. Furthermore, through plasma surface modification, nanoscale silver wires are successfully attached to PBSE, creating a flexible electronic material. Conductivity testing demonstrated that on the PBSE substrate with a conductivity of 0.26 S/cm, the surface can recover its electrical conductivity within just 5 minutes after being cut, showcasing the superior self-healing ability of the composite material.
Additionally, this research applies PBSE composite material to the development of pneumatic-driven fingers and electronic skin. After a pneumatic finger is punctured, it can repair itself in just one minute and resume functioning. With the assistance of capacitive sensors, effective signal feedback can be immediately obtained during finger grasping and movement, indicating the high sensitivity of the sensors developed in this study. In the demonstration of electronic skin, the piezoelectric film can convert dynamic forces into voltage signals, enabling the perception of external pressure and touch. Visual observation is enhanced through the flashing of light bulbs.
In summary, this study successfully develops a PBSE substrate with 1258% tensile strain capacity, capable of self-repairing in less than half an hour at room temperature. It holds significant potential for widespread application in electronic skin and pneumatic-driven systems. These achievements contribute significantly to the advancement of soft robot technology.
論文審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論1
1.1研究背景1
1.2 軟致動器的概述機制3
1.2.1 正壓和負壓調節致動4
1.2.2 形狀記憶合金致動5
1.2.3 馬達驅動6
1.2.4 氣動/液壓驅動7
1.3 提升氣動抓取機械性能8
1.4 提升氣動手指使用壽命9
1.5 嵌入式電子10
1.6 自修復彈性體的發展11
1.6.1外在自癒11
1.6.2內在自癒12
1.7研究動機及目的13
1.8設計概念與目標14
1.8.1研究目標16
1.9論文架構16
第二章 實驗原理與材料特性17
2.1 Polyborosiloxane (PBS)之結構與原理17
2.2聚硼矽氧烷內硼酸含量對應其性質和性能18
2.3聚硼矽氧烷受溫度變化的影響20
2.4聚硼矽氧烷受濕度變化的影響21
2.5聚硼矽氧烷網路的水解22
2.6聚硼矽氧烷化學穩定性23
第三章 實驗方法與設備24
3.1實驗材料24
3.2實驗設備與量測儀器25
3.3實驗設計27
3.3.1 原PBSE實驗方法28
3.3.2 改善氣泡所造成的影響28
3.3.3 體積比改成重量比29
3.3.4 尋找最佳PBS濃度31
3.3.5 純化PBS31
3.3.6調配不同體積比的PBSE與改良後的PBS製程31
3.3.7 統計方法32
3.3.8製作電容感測器32
3.3.9氣動手指33
3.3.10電子皮膚(E-skin)35
第四章 實驗結果與討論36
4.1 PBS反應流程36
4.2 PBS濃度實驗參數36
4.3改進氣泡對PBSE結構缺陷的影響37
4.3.1 PBSE暴露於空氣中所形成的凝膠膜38
4.3.2 PBSE透過離心機去除大氣泡38
4.4比較PBSE結構穩定性39
4.5可拉伸材料 PBSE的自癒性能42
4.6 AgNWs-PBSE的導電特性43
4.6.1 導電材料PBSE之初步測試44
4.7 藉由傅立葉轉換紅外光譜尋找自癒官能基45
4.8 通過溫度變化優化 PBSE 基板以增強拉伸性46
4.8.1原先製成PBSE拉伸能力測試46
4.8.2 PBSE 樣品在不同溫度下的 SEM 圖像48
4.9 去除氣泡的PBSE製成癒合結果48
4.10改良後的PBSE力學性能和其自癒效率50
4.10.1 往復拉伸試驗57
4.11 氣動手指59
4.11.1 壓力感測變化60
4.12 電子皮膚潛在應用61
4.12.1 陣列式電子感測器61
4.13 與其他文獻之實驗成果進行比較62
4.13.1 PBS應變比較62
4.13.2 癒合效率比較63
4.13.3 半小時癒合時間比較68
第五章 結論與未來展望69
5.1 結論69
5.2 未來展望70
第六章 補充資料結果與討論71
6.1 PBSE基板透光度71
6.2 製作PBS12.5攪拌3分鐘溶解反應72
6.3探索聚硼矽氧烷彈性體的高延展性和可塑性73
參考文獻74
附錄79
[1]Vogel, S., Life in moving fluids: the physical biology of flow. Boston, MA: W. 1981, Grant Press.
[2]Vogel, S., Prime mover: a natural history of muscle. 2003: WW Norton & Company.
[3]Dickinson, M.H., et al., How animals move: an integrative view. science, 2000. 288(5463): p. 100-106.
[4]Marchese, A.D., R. Tedrake, and D. Rus, Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. The International Journal of Robotics Research, 2016. 35(8): p. 1000-1019.
[5]Sun, J., et al., Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell Reports Physical Science, 2023: p. 101241.
[6]Tawk, C. and G. Alici, A Review of 3D‐Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities. Advanced Intelligent Systems, 2021. 3(6): p. 2000223.
[7]Albu-Schaffer, A., et al., Soft robotics. IEEE Robotics & Automation Magazine, 2008. 15(3): p. 20-30.
[8]Majidi, C., et al., Influence of surface traction on soft robot undulation. The International Journal of Robotics Research, 2013. 32(13): p. 1577-1584.
[9]Pham, D. and S. Yeo, Strategies for gripper design and selection in robotic assembly. The International Journal of Production Research, 1991. 29(2): p. 303-316.
[10]Wang, X. and Q. Xu. Design of a New Soft Phalanx with Suction Effect and Adjustable Constrained Stiffness. in 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). 2022. IEEE.
[11]Brown, E., et al., Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 2010. 107(44): p. 18809-18814.
[12]Wang, Z., et al. A micro biomimetic manta ray robot fish actuated by SMA. in 2009 IEEE international conference on robotics and biomimetics (ROBIO). 2009. IEEE.
[13]Zotov, N., et al., Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys. Materials Science and Engineering: A, 2017. 682: p. 178-191.
[14]Nespoli, A., et al., The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sensors and Actuators A: Physical, 2010. 158(1): p. 149-160.
[15]Laschi, C., et al., Soft robot arm inspired by the octopus. Advanced robotics, 2012. 26(7): p. 709-727.
[16]Cianchetti, M., et al. Design and development of a soft robotic octopus arm exploiting embodied intelligence. in 2012 IEEE International Conference on Robotics and Automation. 2012. IEEE.
[17]Zollo, L., et al., Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Transactions On Mechatronics, 2007. 12(4): p. 418-429.
[18]Mouri, T., T. Endo, and H. Kawasaki, Review of gifu hand and its application. Mechanics based design of structures and machines, 2011. 39(2): p. 210-228.
[19]Manti, M., et al., A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robotics, 2015. 2(3): p. 107-116.
[20]Chou, C.-P. and B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on robotics and automation, 1996. 12(1): p. 90-102.
[21]Katzschmann, R.K., A.D. Marchese, and D. Rus. Hydraulic autonomous soft robotic fish for 3D swimming. in Experimental Robotics: The 14th International Symposium on Experimental Robotics. 2015. Springer.
[22]Keong, B.A.W. and R.Y.C. Hua, A novel fold‐based design approach toward printable soft robotics using flexible 3D printing materials. Advanced Materials Technologies, 2018. 3(2): p. 1700172.
[23]Pocius, A.V. and D.A. Dillard, Adhesion science and engineering: surfaces, chemistry and applications. 2002: Elsevier.
[24]Whitesides, G.M., Soft robotics. Angewandte Chemie International Edition, 2018. 57(16): p. 4258-4273.
[25]Shepherd, R.F., et al., Soft machines that are resistant to puncture and that self seal. Advanced Materials, 2013.
[26]Dahiya, R.S., et al., Tactile sensing—from humans to humanoids. IEEE transactions on robotics, 2009. 26(1): p. 1-20.
[27]Mishra, R.B., et al., Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Advanced materials technologies, 2021. 6(4): p. 2001023.
[28]Rocha, R.P., et al., Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand. Journal of Micromechanics and Microengineering, 2018. 28(3): p. 034001.
[29]Huang, L., et al., Multichannel and repeatable self‐healing of mechanical enhanced graphene‐thermoplastic polyurethane composites. Advanced Materials, 2013. 25(15): p. 2224-2228.
[30]Campanella, A., D. Döhler, and W.H. Binder, Self‐healing in supramolecular polymers. Macromolecular rapid communications, 2018. 39(17): p. 1700739.
[31]Aïssa, B., et al., Self-healing materials systems: Overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012. 2012.
[32]Dry, C.M. and N.R. Sottos. Passive smart self-repair in polymer matrix composite materials. in Smart Structures and Materials 1993: Smart Materials. 1993. SPIE.
[33]Zhu, D.Y., M.Z. Rong, and M.Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Progress in Polymer Science, 2015. 49: p. 175-220.
[34]Toohey, K.S., et al., Self-healing materials with microvascular networks. Nature materials, 2007. 6(8): p. 581-585.
[35]Blaiszik, B.J., et al., Self-healing polymers and composites. Annual review of materials research, 2010. 40: p. 179-211.
[36]Cordier, P., et al., Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008. 451(7181): p. 977-980.
[37]Meng, H. and G. Li, A review of stimuli-responsive shape memory polymer composites. polymer, 2013. 54(9): p. 2199-2221.
[38]Yang, L., et al., Polydopamine particles reinforced poly (vinyl alcohol) hydrogel with NIR light triggered shape memory and self‐healing capability. Macromolecular rapid communications, 2017. 38(23): p. 1700421.
[39]Li, G., et al., Dually pH-responsive polyelectrolyte complex hydrogel composed of polyacrylic acid and poly (2-(dimthylamino) ethyl methacrylate). Polymer, 2016. 107: p. 332-340.
[40]Lai, Y., et al., Colorless, transparent, robust, and fast scratch‐self‐healing elastomers via a phase‐locked dynamic bonds design. Advanced Materials, 2018. 30(38): p. 1802556.
[41]Tan, Y.J., et al., Progress and Roadmap for Intelligent Self‐Healing Materials in Autonomous Robotics. Advanced Materials, 2021. 33(19): p. 2002800.
[42]Yao, L., et al. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. in Proceedings of the 26th annual ACM symposium on User interface software and Technology. 2013.
[43]Narumi, K., et al. Self-healing UI: Mechanically and electrically self-healing materials for sensing and actuation interfaces. in Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. 2019.
[44]Wu, T. and B. Chen, Synthesis of multiwalled carbon nanotube-reinforced polyborosiloxane nanocomposites with mechanically adaptive and self-healing capabilities for flexible conductors. ACS Applied Materials & Interfaces, 2016. 8(36): p. 24071-24078.
[45]Lee, M.-S., et al., High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano letters, 2013. 13(6): p. 2814-2821.
[46]Yeasmin, R., et al., A Skin-like Self-healing and stretchable substrate for wearable electronics. Chemical Engineering Journal, 2023. 455: p. 140543.
[47]Madden, J.D., Mobile robots: motor challenges and materials solutions. science, 2007. 318(5853): p. 1094-1097.
[48]Osada, Y., H. Okuzaki, and H. Hori, A polymer gel with electrically driven motility. Nature, 1992. 355(6357): p. 242-244.
[49]Ilievski, F., et al., Soft robotics for chemists. Angewandte Chemie, 2011. 123(8): p. 1930-1935.
[50]Shuai, X., et al., Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS applied materials & interfaces, 2017. 9(31): p. 26314-26324.
[51]Bouteiller, L., Assembly via hydrogen bonds of low molar mass compounds into supramolecular polymers. Hydrogen bonded polymers, 2007: p. 79-112.
[52]Wojtecki, R.J., M.A. Meador, and S.J. Rowan, Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature materials, 2011. 10(1): p. 14-27.
[53]Li, X., et al., Synthesis of polyborosiloxane and its reversible physical crosslinks. Rsc Advances, 2014. 4(62): p. 32894-32901.
[54]Drozdov, F.V., et al., Polyborosiloxanes (PBS): Evolution of Approaches to the Synthesis and the Prospects of Their Application. Polymers, 2022. 14(22): p. 4824.
[55]Rubinsztajn, S., New facile process for synthesis of borosiloxane resins. Journal of Inorganic and Organometallic Polymers and Materials, 2014. 24: p. 1092-1095.
[56]Liu, F., et al., Study of hydrolysis behaviour of polyborosiloxane. Polymer, 2023: p. 126005.
[57]張高禎, 可拉伸及自我修補軟性電子材料之設計與製造, in 機械與機電工程學系研究所. 2022, 國立中山大學: 高雄市. p. 51.
[58]Tang, M., et al., Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. Journal of Materials Chemistry A, 2019. 7(48): p. 27278-27288.
[59]Juhasz, A., P. Tasnadi, and L. Fábry, Impact studies on the mechanical properties of polyborosiloxane. Physics Education, 1984. 19(6): p. 302.
電子全文 電子全文(網際網路公開日期:20260731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊