跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/25 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗澤
研究生(外文):Tsung-Tse Lee
論文名稱:鍋爐水牆彎管導波檢測
論文名稱(外文):Guided Wave Inspection of the Water Wall bend Tubing in the Boiler
指導教授:吳美玲吳美玲引用關係楊旭光楊旭光引用關係
指導教授(外文):Wu,Mei-lingYang,Shiuh-Kuang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:121
中文關鍵詞:導波檢測法水牆彎管T(01)模態SH模態部分負載激振
外文關鍵詞:Guided wave inspectionwater-wall bend pipeT(01) modeSH modepartial loading excitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
發電廠內鍋爐水牆管本身具有加熱管中液體及控制爐膛溫度等重要功能,彎管作為管線系統中連結各管件及變更管中液體輸送方向之連結件尤為重要,但水牆彎管長期處於高溫高壓且接觸液體,容易因多種原因而於管線上產生腐蝕嚴重乃至破裂,導致工安事故意外發生。現行實務檢測方法大多透過超音波測厚法搭配目視檢測,但無法對水牆管腐蝕情形有全方位之瞭解,有漏檢的可能性存在。導波法具有長距離檢測及高覆蓋率等優勢並已經應用於多種實務檢測上,故本文欲探討SH導波激振於在水牆管彎管檢測之可行性,透過部分負載激振方式產生SH導波波傳沿水牆彎管之軸向掃描,分析並找出最適有效檢測距離。
本文目標係探討SH導波應用於檢測水牆彎管的可能性,本研究首先以有限元素法軟體ANSYS 建立一套彎頭連接兩段直管之模擬系統,並將導波的激振端置於直管端,再進行彎管的波傳分析。本論文探討T(0,1)以及SH導波在行經不同角度之純彎管的波傳行為,再將研究結果作為推斷具有鰭片之水牆彎管波傳行為的參考,最終探討SH導波在接觸位於水牆彎管上之缺陷時所產生的回波訊號,再藉由其缺陷靈敏度以及有效檢測距離作為評估指標,提供業界在進行實際檢測時的參考。
研究結果顯示無論是全負載T(0,1)導波激振或部分負載SH導波激振,其波傳能量進入彎管前大部分保持於激振端,能量進入彎管後都是獨立行為。以全負載、外側及內側激振模擬系統時,其能量進入彎管後將聚焦至管外側,並最後發散成多股能量傳遞。當相對於單純彎管上側及下側,以部分負載分別激振模擬系統時,能量進入彎管後,都先向管外側聚焦,然後再向激振端反方向分成兩股逐漸發散的能量波。管外側缺陷之最適檢測距離需小於2m;小於60度之彎管的內側缺陷最適檢測距離乃小於1m;大於60度之彎管的內側缺陷,最適檢測距離需小於0.75m。外側激振之結果,可應用於鍋爐水牆鼻部的現場檢測;而內側激振結果則可應用於鍋爐水牆爐床部分之現場檢測,本文研究範圍涵蓋了大部分鍋爐水牆彎管,提供業界對於其現場檢測時的參考依據。
With advancements in various industries, the reliance on basic sectors has grown significantly. The stable supply of electricity is vital for the functioning of these industries, leading to an increase in the number of power plants. The boiler water wall pipes in power plants play an important role in heating the liquid in the pipes and controlling the temperature in the furnace. Bend pipes, as a connecting component in the pipeline system, are particularly important for linking various pipe fittings and changing the direction of liquid transport in the pipeline. However, water wall bend pipes are exposed to high temperatures, high pressure, and contact with liquid for a long time, making them susceptible to corrosion and even cracking for various reasons, which can lead to industrial accidents.
Current inspection methods mainly use ultrasonic thickness measurement combined with visual inspection. However, this approach lacks a comprehensive understanding of the corrosion status in water wall pipes and is susceptible to the possibility of missing defects. Guided wave testing has the advantages of long-distance detection and a high coverage rate and has been applied in many practical inspections. Therefore, this work explores the feasibility of using SH-guided wave excitation for water wall bend pipe inspection. By employing partial load excitation to generate SH-guided waves, the axial scanning along the water wall bend pipe is conducted to analyze and find the most effective inspection distance.
The primary objective of this thesis is to investigate the feasibility of using SH-guided waves for inspecting water wall bend pipes. To achieve this, a system consisting of a bend connecting two straight pipe sections is established by using the finite element method software ANSYS. The guided wave is excited at one end of the straight pipe, and a wave propagation analysis is conducted for the bend pipe section. The wave propagation behavior of T(0,1) guided waves and SH-guided waves passing through bend pipes with different angles was investigated. These findings are then extrapolated to finned water wall bend pipes. Finally, the signals generated by SH-guided waves when contacting defects on water wall bend pipes were examined. The defect sensitivity and effective inspection distance were used as evaluation indicators to provide reference standards for the industry when conducting practical inspections.
Results of the study demonstrated that the inspection criterion of T(0,1) or partially loaded SH waves was excited, most of the wave energy remained at the excitation end before entering the bent pipe, and energy transmission after entering the bent pipe was an independent process. When fully loaded, the external and internal excitation were applied to the bent pipe, the energy entering the bent pipe would focus on the outer side of the pipe and finally diverge into multiple energy transmissions. When exciting the upper and lower sides of the bent pipe separately with partial loads, after the energy enters the pipe, it first converges towards the outside of the pipe, and then divides into two energy-gradually-diverging waves in the opposite direction of the excitation end. The optimal detection distance for defects on the outer side of the pipe is within 2m. The optimal detection distance for defects on the inner side of bent pipes within 60 degrees is less than 1m, while for those greater than 60 degrees, it is less than 0.75m. These findings provide a reference criterion for the industry to evaluate the defect sensitivity and effective detection distance of SH waves when inspecting bent pipes in water walls and were obtained through wave propagation analysis using ANSYS finite element method software.
The work highlights the importance of effective inspection methods for water wall bend pipes in power plants, considering their susceptibility to corrosion and cracks. The utilization of SH-guided waves in combination with partial load excitation shows promise in enhancing inspection processes. By assessing the wave propagation behavior and optimal detection distances for defects, this research provides valuable insights and reference standards for the industry. The findings serve as a foundation for improving the defect sensitivity and effectiveness of practical inspections, ultimately contributing to the safe and reliable operation of power plants.
論文審定書 i
中文摘要 ii
英文摘要 iv
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 4
1.4 研究方法 6
1.5 論文結構 7
第二章 基本理論 13
2.1 模態特徵 13
2.2 SH 導波基本理論 14
2.3 以平板假設近似管件模型的適用性評估 15
2.4 有限元素法 16
第三章 模擬設定 22
3.1 有限元素法之波傳模擬 22
3.1.1 模型建立與元素劃分 22
3.1.2 圓管導波訊號激發方式 24
3.2 模型建構及缺陷位置 25
第四章 結果與討論 37
4.1 全負載激振於彎管上之物理行為 37
4.2 部分負載激振於彎管上之物理行為 39
4.2.1 部分負載外側激振於彎管 39
4.2.2 部分負載外側激振於彎管 40
4.2.3 部分負載上及下側激振於彎管 40
4.3 部分負載激振於三連鰭片彎管上之物理行為 41
4.3.1 部分負載外側激振三連鰭片於彎管 42
4.3.2 部分負載內側激振三連鰭片於彎管 42
4.4 部分負載激振於有缺陷之三連鰭片彎管 43
第五章 結論與未來展望 100
5.1 結論 100
5.2 未來展望 101
參考文獻 103

圖目錄
圖1.12019台灣電力結構圖[3]8
圖1.2腐蝕破裂之水牆管樣本8
圖1.3鍋爐示意圖;(a)火管型鍋爐,(b)水管型鍋爐9
圖1.4檢測訊號特徵示意圖9
圖1.5煤粉鍋爐示意圖(黃框處為鼻部、紅框處為爐床)[9]10
圖1.6鍋爐水牆彎管樣本圖10
圖1.7傳統超音波測厚法11
圖1.8低頻電磁檢測法12
圖2.1圓管上各模態的波傳模式;(a) T(0,1)扭矩模態,(b) L(0,2)縱向模態,(c) F(1,2)撓曲模態18
圖2.2圓周向階數及模態表示法;(a) 徑向位移,(b) 周向位移19
圖2.3SH波傳示意圖19
圖2.4鋁板中前 9 個SH模態在頻厚積0-15 MHz-mm 範圍內的頻散曲線20
圖2.5不同d/R值管件與相同厚度平板之評估參數比較圖21
圖3.1Solid45元素之幾何示意圖28
圖3.22.5英吋90°彎管示意圖28
圖3.3彎管分割示意圖29
圖3.4三連鰭片管尺寸圖(單位:mm)29
圖3.5三連鰭片彎管模型圖29
圖3.6彎管模型網格分割示意圖;(a) 徑向與周向,(b) 軸向網格劃分,(c) 彎管網格劃分30
圖3.7三連鰭片彎管模型網格分割示意圖;(a) 徑向與周向,(b) 軸向網格劃分,(c) 彎管網格劃分31
圖3.8圓管上激振源施加周向位移全負載示意圖32
圖3.9圓管上激振源施加周向位移部分負載示意圖; (a) 上側,(b) 下側,(c) 外側,(d) 內側32
圖3.10單頻調制訊號,中心頻率為40 kHz,5個週期;(a) 時域訊號圖,(b)頻域訊號圖33
圖3.11圓管周向方位各點鐘示意圖33
圖3.12彎管軸向五個截面示意圖34
圖3.13有限元素法模擬人工缺陷,缺陷位置為45°;(a) 周向位置九點鐘(外側),(b) 周向位置三點鐘(內側)35
圖3.14單純圓管激振尺寸圖35
圖3.15部分負載外側激振三連鰭片管尺寸圖;(a) 2m直管,(b) 3m直管35
圖3.16部分負載內側激振三連鰭片管尺寸圖;(a) 0.75m直管,(b) 1m直管,(c) 2m直管,(d) 3m直管36
圖4.1全負載激振φ=90∘彎管波傳動畫截圖47
圖4.2全負載激振φ=90∘無缺陷彎管能量分布極座標圖48
圖4.3全負載激振φ=90∘無缺陷彎管能量分布圖49
圖4.4全負載激振φ=60∘無缺陷彎管能量分布極座標圖50
圖4.5全負載激振φ=60∘無缺陷彎管能量分布圖51
圖4.6全負載激振φ=45∘無缺陷彎管能量分布極座標圖51
圖4.7全負載激振φ=30∘無缺陷彎管能量分布極座標圖52
圖4.8全負載激振φ=45∘無缺陷彎管能量分布圖53
圖4.9全負載激振φ=30∘無缺陷彎管能量分布圖53
圖4.10全負載激振無缺陷彎管能量比較圖54
圖4.11部分負載外側激振φ=90∘彎管波傳動畫截圖(左圖為上側視角,右圖為外側視角)55
圖4.12部分負載外側激振φ=90∘無缺陷彎管能量分布極座標圖56
圖4.13部分負載外側激振φ=90∘無缺陷彎管能量分布圖57
圖4.14部分負載外側激振φ=60∘無缺陷彎管能量分布極座標圖58
圖4.15部分負載外側激振φ=45∘無缺陷彎管能量分布極座標圖59
圖4.16部分負載外側激振φ=30∘無缺陷彎管能量分布極座標圖59
圖4.17部分負載外側激振φ=60∘無缺陷彎管能量分布圖60
圖4.18部分負載外側激振φ=45∘無缺陷彎管能量分布圖61
圖4.19部分負載外側激振φ=30∘無缺陷彎管能量分布圖61
圖4.20部分負載外側激振無缺陷彎管能量比較圖62
圖4.21部分負載內側激振φ=90∘彎管波傳動畫截圖(左圖為上側視角,右圖為外側視角)63
圖4.22部分負載內側激振φ=90∘無缺陷彎管能量分布極座標圖64
圖4.23部分負載內側激振φ=90∘無缺陷彎管能量分布圖65
圖4.24部分負載內側激振φ=60∘無缺陷彎管能量分布極座標圖65
圖4.25部分負載內側激振φ=60∘無缺陷彎管能量分布極座標圖66
圖4.26部分負載內側激振φ=30∘無缺陷彎管能量分布極座標圖67
圖4.27部分負載內側激振φ=60∘無缺陷彎管能量分布圖68
圖4.28部分負載內側激振φ=45∘無缺陷彎管能量分布圖68
圖4.29部分負載內側激振φ=30∘無缺陷彎管能量分布圖69
圖4.30部分負載內側激振無缺陷彎管能量比較圖69
圖4.31部分負載上側激振φ=90∘彎管波傳動畫截圖(左圖為上側視角,右圖為外側視角)71
圖4.32部分負載上側激振φ=90∘無缺陷彎管能量分布極座標圖72
圖4.33部分負載上側激振φ=90∘無缺陷彎管能量分布圖73
圖4.34部分負載上側激振φ=60∘無缺陷彎管能量分布極座標圖74
圖4.35部分負載上側激振φ=45∘無缺陷彎管能量分布極座標圖75
圖4.36部分負載上側激振φ=30∘無缺陷彎管能量分布極座標圖75
圖4.37部分負載上側激振φ=60∘無缺陷彎管能量分布圖76
圖4.38部分負載上側激振φ=45∘無缺陷彎管能量分布圖77
圖4.39部分負載上側激振φ=30∘無缺陷彎管能量分布圖77
圖4.40部分負載上側激振無缺陷彎管能量比較圖78
圖4.41部分負載外側激振φ=90∘三連鰭片管波傳動畫截圖(外側視角)79
圖4.42部分負載外側激振φ=90∘三連鰭片彎管能量分布極座標圖79
圖4.43部分負載外側激振φ=90∘三連鰭片彎管能量分布圖81
圖4.44部分負載外側激振φ=60∘三連鰭片彎管能量分布極座標圖81
圖4.45部分負載外側激振φ=45∘三連鰭片彎管能量分布極座標圖82
圖4.46部分負載外側激振φ=30∘三連鰭片彎管能量分布極座標圖83
圖4.47部分負載外側激振φ=60∘三連鰭片彎管能量分布圖84
圖4.48部分負載外側激振φ=45∘三連鰭片彎管能量分布圖84
圖4.49部分負載外側激振φ=30∘三連鰭片彎管能量分布圖85
圖4.50部分負載內側激振φ=90∘三連鰭片管波傳動畫截圖(內側視角)85
圖4.51部分負載內側激振φ=90∘三連鰭片彎管能量分布極座標圖86
圖4.52部分負載內側激振φ=90∘三連鰭片彎管能量分布圖87
圖4.53部分負載內側激振φ=60∘三連鰭片彎管能量分布極座標圖88
圖4.54部分負載內側激振φ=45∘三連鰭片彎管能量分布極座標圖89
圖4.55部分負載內側激振30連鰭片彎管能量分布極座標圖89
圖4.56部分負載內側激60度三連鰭片彎管能量分布圖90
圖4.57部分負載內側激45度三連鰭片彎管能量分布圖91
圖4.58部分負載內側激30度三連鰭片彎管能量分布圖91
圖4.59外側激振於距彎管3m處之缺陷時域訊號圖;(a)-(e)為15-75度截面92
圖4.60外側激振於距彎管2m處之缺陷時域訊號圖;(a)-(e)為15-75度截面93
圖4.61外側激振無缺陷三連鰭片管9點鐘方向能量分布圖94
圖4.62內側激振於距彎管3m處之缺陷時域訊號圖;(a)-(e)為15-75度截面95
圖4.63內側激振於距彎管2m處之缺陷時域訊號圖;(a)-(e)為15-75度截面96
圖4.64內側激振於距彎管1m處5之缺陷時域訊號圖;(a)-(e)為15-75度截面97
圖4.65內側激振於距彎管0.75m處之缺陷時域訊號圖98
圖4.66內側激振無缺陷三連鰭片管3點鐘方向能量分布圖98
圖4.67有效檢測距離示意圖;(a) 3m,(b) 2m,(c) 1m,(d) 0.75m99


表目錄
表3.1角度90°彎管尺寸規格表:ANSI B16.927
表4.1外側激振之回波訊號能量(%)46
表4.2內側激振之回波訊號能量(%)46
1.台灣高雄氣爆事故。 2014年7月31日,取自
https://zh.wikipedia.org/wiki/2014高雄氣爆事故

2.印度北部北方省火力發電廠爆炸事故。2017年11月1日, 取自
https://news.ltn.com.tw/news/world/breakingnews/2241277

3.台灣電力各機組發電量。2020年1月10日, 取自
https://www.taipower.com.tw/d006/loadGraph/loadGraph/genshx_.html

4.賴耿陽,實用鍋爐學,復漢出版社,中華民國86年9月

5.Wavemaker G3 Procedure Based Inspector Training Manual, Guided Ultrasonics
Ltd., Nottingham, UK, 2007

6.D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 39, pp. 381-397, 1992

7.M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998

8.P. Cawley and D. N. Alleyne, “The Use of Lamb Waves for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1998

9.Boiler In Thermal Power Plant。取自
https://www.coalhandlingplants.com/boiler-in-thermal-power-plant/

10.G. K. Gupta, “Corrosion Mapping of Water Wall Tubes of Boiler UsingLFET,” Journal of Engineering Research and Application , Vol. 7, pp. 23-29, 2017

11.王辰,鍋爐水牆管導波檢測,國立中山大學機械與機電工程學研究所碩士論文,中華民國110年。

12.J. A. Mcfadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954

13.P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956

14.R. D. James and M. Wutting, “Magnetostriction of Martensite,” Philosophical Magazine A, Vol. 77, pp. 1273-1299, 1998

15.R. B. Thompson, “New Configurations for the Electromagnetic Generation of SH Waves in Ferromagnetic Materials,” IEEE Ultrasonics Symposium, Vol. 1, pp. 374-378, 1978

16.R. B. Thompson, “Generation of Horizontally Polarized Shear Waves in Ferromagnetic Materials Using Magnetostrictively Coupled Meander-coil Electromagnetic Transducers,” Appl. Phys., Vol. 34, pp. 175-177, 1979

17.B. Igarashi and G. A. Alers, “Excitation of Bulk Shear Waves in Steel by Magnetostrictive Coupling,” IEEE Ultrasonics Symposium, Vol. 1, pp. 896-902

18.J. Gauthier, V. Mustafa and A. Chahbaz, “EMAT Generation of Horizontally Polarized Guided Shear Waves for Ultrasonic Pipe Inspection,” International Pipeline Conference, Vol. 1, pp. 327-334, 1998

19.M. Hirao and H. Ogi, “An SH-wave EMAT Technique for Gas Pipeline Inspection,” NDT&E International, Vol. 32, pp 127-132, 1999

20.W. Li and Y. Cho, “Quantification and Imaging of Corrosion Wall Thinning Using Shear Horizontal Guided Waves Generated by Magnetostrictive Sensors,” Sensors and Actuators A: Physical, Vol. 232, pp. 251-258, 2015

21.S. Srikanth, K. Gopalakrishna, S. K. Das and B. Ravilumar, “Phosphate Induced Stress Corrosion Cracking in a Waterwall Tube from a Coal Fired Boiler,” Engineering Failure Analysis, Vol. 10, pp. 491-501, 2003

22.S. W. Liu, W. Z. Wang, and C. J. Liu, “Failure analysis of the boiler water-wall tube,” Case Studies in Engineering Failure Analysis, Vol. 79, pp. 704-713, 2017

23.D. N. Alleyne, M. J. S. Lowe and P. Cawley, “Detection of Corrosion in Pipe Using
Lamb Waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol
14, pp. 2073-2080, 1995.

24.C. H. Yew, “Using Ultrasonic SH Waves to Estimate the Quality of Adhesive Bonds:A Preliminary Study,” Journal of the Acoustical Society of America, Vol. 76, No.2, pp.525-531, 1984

25.H. J. Salzburger and W. Repplinger, “Thickness Measurements of Sheets and Plates with Horizontally Polarized Guided Plate Waves (SH-Modes) and Electromagnetic Ultrasonic (EMUS) Transducers,” Nondestructive Testing, Vol. 4, pp. 2314-2321,2002

26.J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999

27.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959

28.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959

29.D. Alleyne and P. Cawley, “The Long Range Detection of Corrosion in Pipes Using Lamb Waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995

30.D. Alleyne, M. J. S. Lowe and P. Cawley, “The Inspection of Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859-1866, 1996

31.J. D. Achenbach, Wave Propagation in Elastic Solid, New York: North-Holland,
1984

32.W. Luo, X. Zhao and J. L. Rose, “A Guided Wave Plate Experiment for a Pipe,”
Journal of Pressure Vessel Technology, Vol. 127, pp. 345-350, 2005

33.劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
34.The American Society of Mechanical Engineers, “Factory-Made Wrought Buttwelding Fittings,” An American National Standard, B16.9, 2003

35.P. Cawley, M. J. S. Lowe, F. Simonetti, C. Chevalier and A. G. Roosenbrand, “The Variation of the Reflection Coefficient of Extensional Guided Waves in Pipes from Defects as a Function of Defect Depth, Axial Extent, Circumferential Extent and Frequency,” Journal of Mechanical Engineering Science, Vol. 216, pp. 1131-1143, 1998

36.謝明夏,以導波法檢測管路中缺陷的研究,國立中山大學機械與機電工程學研究所碩士論文,中華民國92年。

37.G. Meseguer and P. J. Sánchez-Sesma, “Focusing Of Elastic Waves In Curved Plates And Pipes," Journal of Applied Physics, Vol. 82, No. 5, pp. 2106-2114, 1997

38.J. D. Achenbach, “Acoustic wave focusing by curved surfaces, ” Journal of Applied Physics, Vol. 49, No. 9, pp. 4626-4630, 1978

39.C. H. Ding and H. J. Wu, “Wave Propagation And Focusing In Curved Cylindrical Shells, ”Journal of Sound and Vibration, Vol. 187, No. 5, pp. 803-823, 1995

40.J. P. Dowling and C. M. Soukoulis, “Focusing Of Electromagnetic Waves By Curved Surfaces, ” Physical Review Letters, Vol. 90, No. 22, p. 227-401, 2003

41.J. B. Pendry and A. MacKinnon, “Focusing Of Surface Plasmon Polaritons By Curved Structures, ” Physical Review Letters, Vol. 86, No. 25, pp. 5687-5690, 2001
電子全文 電子全文(網際網路公開日期:20280717)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊