( 您好!臺灣時間:2024/06/20 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):You-Bing Liu
論文名稱(外文):Research and development of waste lubricating oil to prepare high-value activated carbon to improve the removal efficiency of volatile organic compounds
外文關鍵詞:Activated CarbonWaste Lubricating OilVolatile Organic CompoundsPollution ReductionCircular Economy
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在碳化時間4小時下的C4A1-500(1:2),觀察出活性碳之吸脫附曲線與IUPAC所定義之I型等溫線之特徵更為明顯,可獲得最佳的效果,比表面積達到了1800 m2/g、孔徑0.36 nm、孔體積0.55 cm3/g,較文獻製備之活性碳比表面積高。FTIR分析中,1,622 cm-1處出現的特徵峰推測為羧酸或酚基內酯中的C=O伸縮,3,422 cm-1處出現的特徵峰推測為羧酸官能團,與活性碳的趨勢相符。在ESEM分析中,活性碳通過KOH改質後皆有良好的孔洞產生,當KOH使用量提高時,可以有效地使碳材料活化並產生細微孔洞。
活性碳透過不同丙酮/異丙醇進流濃度進行吸附實驗,結果顯示丙酮/異丙醇趨勢相同,當進流濃度提高時,其貫穿點出現時間逐漸提早,丙酮貫穿點依序從130-75 min出現。在30°C條件下丙酮濃度控制於200、400、600、800和1000 ppm時,其飽和吸附量可達67.6、119.1、158.9、215.5、212.3 mg/g,濃度越高累積吸附量越大,推測是由於較高濃度的污染物分子更容易進入活性碳孔洞,使其更充分地與吸附位點接觸,從而增加了吸附量。探討不同溫度(30、40、50、60、70°C)對VOCs的影響,結果顯示在30°C和40°C的環境條件下 ,本研究所製備的活性碳表現出優異的吸附效果,活性碳在相對較低的溫度下對廢氣中的污染物有較高的去除效率。然而,當環境溫度逐漸升高時,吸附效果則呈現逐步下降的趨勢。
The primary sources of waste lubricating oil emissions in the country are vehicles and industrial factories. If not adequately recovered and recycled, they will have a significant impact on the environment. In comparison to other oil products, waste lubricating oil contains a higher carbon content, making it suitable for carbon material production, as recognized by international research. Statistics reveal that the high-tech industry in Taiwan is a major emitter of volatile organic compounds, with acetone and isopropanol being the primary pollutants released by factories. Therefore, this study aims to utilize self-produced activated carbon for adsorbing volatile organic compounds, with the objectives of waste reduction, resource utilization, pollution removal, and promoting new directions in the industry.
Under a carbonization duration of 4 hours for the C4A1-500(1:2) configuration, a pronounced exhibition of adsorption-desorption characteristics of activated carbon and the features akin to Type I isotherms, as delineated by IUPAC, becomes manifest. This configuration yields optimal outcomes, boasting a specific surface area of 1800 m²/g, a pore diameter of 0.36 nm, and a pore volume of 0.55 cm³/g, surpassing the reported surface area of activated carbon in existing literature. In Fourier-transform infrared spectroscopy (FTIR) analysis, the distinctive peak appearing at 1622 cm⁻¹ is conjectured to be the stretching vibration of C=O in carboxylic acids or phenolic esters, while the peak at 3422 cm⁻¹ corresponds to the carboxylic functional group, aligning with the trends exhibited by activated carbon. Environmental scanning electron microscopy (ESEM) analysis elucidates the generation of well-defined pores in activated carbon post modification with KOH. As the quantity of KOH employed increases, it effectively activates the carbon material, instigating the formation of minute pores.
Activated carbon, subjected to varying concentrations of acetone/isopropanol inflow, underwent adsorption experiments. Results indicated parallel trends between acetone and isopropanol. As the inflow concentration increased, breakthrough times progressively advanced. Specifically, the breakthrough time for acetone transitioned sequentially from 130 to 75 minutes. Under conditions of 30°C, when acetone concentrations were controlled at 200, 400, 600, 800, and 1000 ppm, the saturation adsorption capacities reached 67.6, 119.1, 158.9, 215.5, and 212.3 mg/g. Higher concentrations correlated with augmented cumulative adsorption, presumably due to the heightened ease with which pollutant molecules at higher concentrations could infiltrate activated carbon pores. This facilitated more extensive interaction with adsorption sites, consequently amplifying the adsorption quantity. An exploration of the influence of different temperatures (30, 40, 50, 60, 70°C) on volatile organic compounds (VOCs) revealed that under conditions of 30°C and 40°C, the prepared activated carbon displayed exceptional adsorption efficiency. Notably, activated carbon demonstrated heightened pollutant removal efficiency at relatively lower temperatures. However, as the ambient temperature gradually increased, the adsorption efficacy displayed a progressively diminishing trend.
論文審定書 i
摘要 ii
目錄 v
圖目錄 viii
表目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 廢油概述 5
2-1-1 潤滑油 5
2-1-2 機油 6
2-1-3 切削油 8
2-2 廢油回收現況 9
2-3 國際廢潤滑油回收再利用研究 11
2-4 活性碳 15
2-4-1 活性碳之特性 15
2-4-3 活性碳影響因子 20
2-4-4 活性碳吸附 21
2-5 揮發性有機物(Volatile Organic Compounds, VOCs) 23
2-5-1 揮發性有機化合物主要來源 23
2-5-2 丙酮化學特性與危害 25
2-5-3 異丙醇之特性及危害 26
第三章 研究方法 31
3-1 研究架構與流程 31
3-1-1 文獻彙整與研究流程設計 31
3-2 實驗使用藥品及儀器設備 37
3-2-1 藥品耗材 37
3-2-2 實驗儀器與設備 38
3-3 品質保證與品質控制 46
3-3-1 污染物採樣 46
3-3-2 活性碳吸附床漏氣測試 49
3-3-3 污染物檢量線 51
第四章 結果與討論 53
4-1 廢潤滑油性質分析 53
4-2 在不同裂解條件下之活性碳鑑定 54
4-2-1 比表面積與孔隙度(BET)分析 55
4-2-2 X光繞射(XRD)分析 61
4-2-3 傅立葉轉換紅外線(FTIR)光譜分析 64
4-2-4 環境掃描式電子顯微鏡(ESEM)分析 65
4-3 活性碳吸附實驗 70
4-3-1 不同溫度下丙酮對活性碳吸附量之影響 70
4-3-2 不同污染物下對活性碳吸附量之影響 75
第五章 結論與建議 89
5-1 結論 89
5-2 建議 91
參考文獻 92
Agarwal AK. (2009.) Lubricating Oil Tribology of a Biodiesel-Fuelled Compression Ignition Engine. Internal Combustion Engine Division Spring Technical Conference; 609: 754-765.
Abdullah, H. B., Irmawati, R., Ismail, I., & Yusof, N. A. (2020). Utilization of waste engine oil for carbon nanotube aerogel production using floating catalyst chemical vapor deposition. Journal of Cleaner Production, 261.
Andrew J, Zeng T, Frank TC, Carpenter JK, Arnold WA, (2014). Cussler EL. Membrane-Assisted Volatile Organic Compound Removal from Aqueous Acrylic Latex Is Faster Than from Aqueous Solutions. Industrial & Engineering Chemistry Research; 53: 12420−12427.
Anietie Okon Etim, Chiazor Faustina Jisieike (2022). Taiwo Hassan Ibrahim, Eriola Betiku, Chapter 2 - Biodiesel and its properties, Production of Biodiesel from Non-Edible Sources, Technological Updates, , Pages 39-79.
Ao W, Fu J, Mao X, Kang Q, Ran C, Liu Y, Zhang H, Gao Z, Li J, Liu G, Dai J. (2018). Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews; 92: 958-979.
Arabmofrad, S., Bagheri, M., Rajabi, H., & Jafari, S. M. (2020). Nanoadsorbents and nanoporous materials for the food industry. In Handbook of Food Nanotechnology (pp. 107-159).
Azmi N., Buthiyappan A.,Abdul A., Raman A., Patah M., Sufian S. (2022). Recent advances in biomass based activated carbon for carbon dioxide capture – A review, Journal of Industrial and Engineering Chemistry, Volume 116, 25 December , Pages 1-20.
Bensadok K, Belkacem M, Nezzal G. (2007). Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation. Desalination; 206: 440-448.
Bhaskar T, Bhavya B, Singh R, Naik DV, Kumar A, Goyal HB. (2019). Chapter 3 - Thermochemical Conversion of Biomass to Biofuels. Biofuels 2011; 51-77.
Bhomick, P. C., Jamir, S., Sinha, U. B., Sahoo, B. K., & Sinha, D. (2019). Biomass-derived activated carbon for removal of 222Rn from air. Sustainable Chemistry and Pharmacy, 14.
Byamba-Ochir, N., Shim, W. G., Balathanigaimani, M. S., & Moon, H. (2017). High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption. Applied Energy, 190, 257-265.
Chin SC, Shafiq N. (2012)., Nuruddin MF. Effects of used Engine Oil in Reinforced Concrete Beams: The Structural Behaviour. International Journal of Civil and Environmental Engineering; 6: 815-821.
Chinchkar DS, Satpute DT, Kumbhar NR (2022)., Castor Oil as Green Lubricant: A Review. International Journal of Engineering Research and Applications 2012; 5.
Colomba, A., Berruti, F., & Briens, C. (2022). Model for the physical activation of biochar to activated carbon. Journal of Analytical and Applied Pyrolysis, 168.
Gao, Y., Yue, Q., Gao, B., & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Sci Total Environ, 746, 141094.
Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, 133764.
Ghobeira, R., Esbah Tabaei, P. S., Morent, R., & De Geyter, N. (2022). Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: A review. Surfaces and Interfaces, 31.
Gómez-Rico, M. a. F., Martı́n-Gullón, I., Fullana, A., Conesa, J. A., & Font, R. (2003). Pyrolysis and combustion kinetics and emissions of waste lube oils. Journal of Analytical and Applied Pyrolysis, 68-69, 527-546.
Hesp SAM, Shurvell HF. (2010). X-ray fluorescence detection of waste engine oil residue in asphalt and its effect on cracking in service. International Journal of Pavement Engineering; 11: 6.
Huang, X., Tang, M., Li, H., Wang, L., & Lu, S. (2023). Adsorption of multicomponent VOCs on various biomass-derived hierarchical porous carbon: A study on adsorption mechanism and competitive effect. Chemosphere, 313, 137513.
Jia S, Wei J, Meng X, Shao Z. (2020). Facile and friendly preparation of N/S Co-doped graphene-like carbon nanosheets with hierarchical pore by molten salt for all-solid-state supercapacitor. Electrochimica Acta; 331: 135338.
Jibril BY, Al-Maamari RS, Hegde G, Al-Mandhary N, Houache O. (2007). Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon. Journal of Analytical and Applied Pyrolysis 2007; 80: 277-282.
Kaipannan S, Govindarajan K, Sundaramoorthy S, Marappan S. (2019). Waste Toner-Derived Carbon/Fe3O4 Nanocomposite for High-Performance Supercapacitor. ACS Omega; 4: 15798−15805.
Kaipannan, S., Ganesh, P. A., Manickavasakam, K., Sundaramoorthy, S., Govindarajan, K., Mayavan, S., & Marappan, S. (2020). Waste engine oil derived porous carbon/ZnS Nanocomposite as Bi-functional electrocatalyst for supercapacitor and oxygen reduction. Journal of Energy Storage, 32.
Kurzweil P. (2015). Chapter 19 - Electrochemical Double-layer Capacitors. Electrochemical Energy Storage for Renewable Sources and Grid Balancing 345-407.
Li D, Zhou J, Wang Y, Tian Y, Wei L, Zhang Z, Qiao Y, Li J. (2019). Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel; 238: 232-29.
Li X, Zhai J, Li H, Gao X. (2020). An integration recycling process for cascade utilization of waste engine oil by distillation and microwave-assisted pyrolysis. Fuel Processing Technology; 199: 106245.
Li Y, Zhang D, He J, Wang Y, Zhang X, Zhang Y, Liu X, Wang K, Wang Y. (2019). Hierarchical porous carbon nanosheet derived from waste engine oil for high-performance supercapacitor application. Sustainable Energy & Fuels.; 3: 499-507.
Li, L., Tang, L., Liang, X., Liu, Z., & Yang, Y. (2016). Adsorption Performance of Acetone on Activated Carbon Modified by Microwave Heating and Alkali Treatment. Journal of Chemical Engineering of Japan, 49(11), 958-966.
Li, S., Jia, Z., Li, Z., Li, Y., & Zhu, R. (2016). Synthesis and characterization of mesoporous carbon nanofibers and its adsorption for dye in wastewater. Advanced Powder Technology, 27(2), 591-598.
Li, X., Zhang, H., Zhao, B., & Zhang, Y. (2020). Preparation of hydrogen storage carbon materials using bio-oil heavy components as carbon-containing precursor. Fuel Processing Technology, 203.
Ligotski R, Sager U (2019), Schneiderwind U, Asbach C, Schmidt F. Prediction of VOC adsorption performance for estimation of service life of activated carbon based filter media for indoor air purification. Building and Environment; 149: 146−156.
Lillo-Ródenas, M. A., Fletcher, A. J., Thomas, K. M., Cazorla-Amorós, D., & Linares-Solano, A. (2006). Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon, 44(8), 1455-1463.
Lim, C., Jeong, S. G., Ha, S., Ha, N., Myeong, S., & Lee, Y.-S. (2023). Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition. Journal of Industrial and Engineering Chemistry, 124, 201-210.
Ling SK, Tian HY, Wang S, Rufford T, Zhu ZH, Buckley CE. (2020). KOH catalysted preparation of activated carbon aerogels for dye adsorption. Journal of Colloid and Interface Science 2011; 357: 157−162.
Liu, T., Qiang, N., He, J., Miao, H., Li, Z., Cao, Y., Shi, T., & Chen, S. (2023). Migration and diffusion of unsteady-state flow of volatile organic compounds on activated carbon adsorption beds under reverse ventilation. Chemosphere, 310, 136879.
Liu, W., Zha, W., Yin, H., Yang, C., Lu, K., & Chen, J. (2023). Integration of rare earth element stimulation, activated carbon adsorption and cell immobilization in ABE fermentation for promoting biobutanol production. Chemical Engineering and Processing - Process Intensification, 184.
Liu, X., Zhu, H., Wu, W., Lin, D., & Yang, K. (2022). Role of molecular size of volatile organic compounds on their adsorption by KOH-activated micro-mesoporous carbon. J Hazard Mater, 424(Pt B), 127355.
Liu, Y., Huo, Z., Song, Z., Zhang, C., Ren, D., Zhong, H., & Jin, F. (2019). Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. Journal of the Taiwan Institute of Chemical Engineers, 96, 575-587.
Lu B, Hu L, Yin H, Mao X, Xiao W, Wang D. (2016) Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International Journal of Hydrogen Energy; 41: 18713−18720.
Lu, Y.-C., Yang, J.-P., Yang, B.-T., Chen, C.-C., & Lai, L.-L. (2022). Introduction of a spiro-linker in triazine-based polymers to enlarge void space and increase IPA adsorbing capacity to 164.7 mg/g at 1000 ppm. Journal of the Taiwan Institute of Chemical Engineers, 140.
Mahapatra U, Chatterjee A, Das C. (2020). Manna AK. Adsorptive removal of hexavalent chromium and methylene blue from simulated solution by activated carbon synthesized from natural rubber industry biosludge. Environmental Technology & Innovation 2021; 22: 101427.
Mamun, A. A., Al-Abdul Wahhab, H. I., & Dalhat, M. A. (2020). Comparative Evaluation of Waste Cooking Oil and Waste Engine Oil Rejuvenated Asphalt Concrete Mixtures. Arabian Journal for Science and Engineering, 45(10), 7987-7997.
Mansoubi, H., Mansourpour, Z., & Fatemi, S. (2023). Investigation of CO(2) and CH(4) capture from syngas in adsorption process and breakthrough modeling by modified Lattice-Boltzmann mesoscale method. Chemosphere, 325, 138366.
Mishra, A., Siddiqi, H., Kumari, U., Behera, I. D., Mukherjee, S., & Meikap, B. C. (2022). Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review. Renewable and Sustainable Energy Reviews, 150. Molina-Jordá, J. M. Magneto-inductive open-cell cellular carbon composites with activated carbon as guest phase: Guefoams for energy-efficient VOCs management. Ceramics International, 48(12), 17440-17448.
Mogawer W, Bennert T, Daniel JS, Bonaquist R, Austerman A, Booshehrian A. (2012). Performance characteristics of plant produced high RAP mixtures. Road Materials and Pavement Design; 13: 183-208.
Mohammed RR, Ibrahim IAR, Taha AH, Mckay G. (2013). Waste lubricating oil treatment by extraction and adsorption. Chemical Engineering Journal; 220: 343-351.
Molino A, Donatelli A, Marino T, Aloise A, Rimauro J, Iovane P. (2018). Waste tire recycling process for production of steam activated carbon in a pilot plant. Resources, Conservation and Recycling 2018; 129: 102−111.
Nowruzi R, Heydari M, Javanbakht V. (2020). Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. International Journal of Biological Macromolecules; 147: 209-216.
Pampel J, Denton C, Fellinger TP. (2016). Glucose derived ionothermal carbons with tailor-made porosity. Carbon 2016; 107: 288-296.
Papadaki A, Fernandes KV, Chatzifragkou A, Aguieiras ECG (2018). Cavalcanti da Silva JA, Fernandez-Lafuente R, Papanikolaou S, Koutinas A, Freire DMG. Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresource Technology; 267: 311-318.
Qi X, Zhang H, Li C, Chen D, Sun C, Yang Z. (2020). A simple and recyclable molten-salt route to prepare superthin biocarbon sheets based on the high water-absorbent agaric for efficient lithium storage. Carbon; 157: 286-294.
Rahman MM, Ta S, Samdani S, Kabir KB. (2008). Effect of Operating Variables on Regeneration of Base-Oil from Waste Oil by Conventional Acid-Clay Method. Chemical Engineering Research Bulletin 2008; 12: 24-27.
Rashidi, N. A., & Yusup, S. (2016). An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 13, 1-16.
Rashidi, N. A., & Yusup, S. (2017). A review on recent technological advancement in the activated carbon production from oil palm wastes. Chemical Engineering Journal, 314, 277-290.
Saleh, T. S., Badawi, A. K., Salama, R. S., & Mostafa, M. M. M. (2023). Design and Development of Novel Composites Containing Nickel Ferrites Supported on Activated Carbon Derived from Agricultural Wastes and Its Application in Water Remediation. Materials (Basel), 16(6).
Sessa, F., Merlin, G., & Canu, P. (2022). Pine bark valorization by activated carbons production to be used as VOCs adsorbents. Fuel, 318.
Shao, Y., Chen, H., Li, Y., & Ma, X. (2015). Fabrication of novel porous carbon membrane/sintered metal fibers composite for isopropanol adsorption. Chemical Engineering Journal, 276, 51-58.
Shayegan Z, Lee CS, Haghighat F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chemical Engineering Journal 2018; 334: 2408-2439.
Shi, R., Chen, H., Liu, B., Zhou, C., Pi, W., Zeng, Z., & Li, L. (2022). Porous carbon fibers from low-temperature sodium amide activation for acetone adsorption. Materials Chemistry and Physics, 286.
Shi, S., & Liu, Y. (2021). Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption. Fuel, 306.
Silvia HMRD, Oliveira JRM, Jesus CMG. (2012). Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resources, Conservation and Recycling; 60: 38-48.
Slaughter, R. J., Mason, R. W., Beasley, D. M., Vale, J. A., & Schep, L. J. (2014). Isopropanol poisoning. Clin Toxicol (Phila), 52(5), 470-478.
Soufi MD, Ghobadian B, Atashgaran M, Mousavi SM, Najafi G. (2019). Biolubricant production from edible and novel indigenous vegetable oils: mainstream methodology, and prospects and challenges in Iran. Biofuels, Bioproducts and Biorefining; 13: 838-849.
Su, C., Guo, Y., Yu, L., Zou, J., Zeng, Z., & Li, L. (2021). Insight into specific surface area, microporosity and N, P co-doping of porous carbon materials in the acetone adsorption. Materials Chemistry and Physics, 258.
Su, Z., Zhang, Y., Huang, L., Wang, S., Zhu, Y., Li, L., & Lu, X. (2020). Acetone adsorption on activated carbons: Roles of functional groups and humidity. Fluid Phase Equilibria, 521.
Sun, W., Zhang, T., Li, J., & Zhu, X. (2023). Enhanced gaseous acetone adsorption on montmorillonite by ball milling generated Si-OH and interlayer under synergistic modification with H2O2 and tetramethylammonium bromide. Chemosphere, 321, 138114.
Suriani AB, Alfarisa S, Mohamed A, Isa IM, Kamari A, Hashim N, Mamat MH, Mohamed AR. (2015)., Rusop M. Quasi-aligned carbon nanotubes synthesised from waste engine oil. Materials Letters; 139: 220-223.
Suriani, A. B., Azira, A. A., Nik, S. F., Md Nor, R., & Rusop, M. (2009). Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Materials Letters, 63(30), 2704-2706.
Tang L, Li L, Chen R, Wang C, Ma W, Ma X. (2016). Adsorption of acetone and isopropanol on organic acid modified activated carbons. Journal of Environmental Chemical Engineering 2016; 4: 2045-2051.
Teoh WP, Noor ZH, Ng CA, Swee YC. (2018). Catalyzed waste engine oil as alternative binder of roofing tiles – Chemical analysis and optimization of parameters. Journal of Cleaner Production 2018; 174: 988-999.
Tong R, Zhang L, Yang X, Liu J, Zhou P, Li J. (2019). Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing. Journal of Cleaner Production; 208: 1096−1108.
Ulrich B, Frank TC, McCormick A, Cussler EL. (2014). Membrane-assisted VOC removal from aqueous acrylic latex. Journal of Membrane Science; 452: 426-432.
Verma P, Pickering E, Jafari M, Guo Y, Stevanovic S, Fernando JFS, Golberg D, Brooks P, Brown R, Ristovski Z. (2019). Influence of fuel-oxygen content on morphology and nanostructure of soot particles. Combustion and Flame; 205: 206-219.
Wang, H., Wang, B., Li, J., & Zhu, T. (2019). Adsorption equilibrium and thermodynamics of acetaldehyde/acetone on activated carbon. Separation and Purification Technology, 209, 535-541.
Wei, X., Wu, S., Liu, P., Huang, S., Li, X., Yang, J., & Wu, Y. (2023). Characterization of physicochemical properties of activated carbons prepared from penicillin mycelial residues and its adsorption properties for VOCs. Journal of Environmental Chemical Engineering, 11(3).
Xiao, K., Liu, H., Li, Y., Yang, G., Wang, Y., & Yao, H. (2020). Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chemical Engineering Journal, 382.
Yakout SM, El-Deen GS. (2011). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry 2011; 9: 1155−1162.
Yi, F.-Y., Lin, X.-D., Chen, S.-X., & Wei, X.-Q. (2008). Adsorption of VOC on modified activated carbon fiber. Journal of Porous Materials, 16(5), 521-526.
Yin Y, Gao Y, Zhang Y, Li A, Ji G. (2019). Synthesis of honeycomb-like hierarchical porous carbon via molten salt pyrolysis in a novel sequencing integration system for high-performance supercapacitors. Microporous and Mesoporous Materials; 278: 195-205.
Zare A, Bodisco TA, Jafari M, Verma P, Yang L, Babaie M, Rahman MM, Banks A, Ristovski ZD, Brown RJ, Stevanovic S. (2021). Cold-start NOx emissions: Diesel and waste lubricating oil as a fuel additive. Fuel; 286: 119430.
Zhang, X., Xiang, W., Miao, X., Li, F., Qi, G., Cao, C., Ma, X., Chen, S., Zimmerman, A. R., & Gao, B. (2022). Microwave biochars produced with activated carbon catalyst: Characterization and sorption of volatile organic compounds (VOCs). Sci Total Environ, 827, 153996.
Zhao, X., Li, X., Zhu, T., & Tang, X. (2018). Adsorption behavior of chloroform, carbon disulfide, and acetone on coconut shell-derived carbon: experimental investigation, simulation, and model study. Environ Sci Pollut Res Int, 25(31), 31219-31229.
行政院環境保護署環境檢驗所,「感應耦合電漿質譜儀法」,NIEA M105.01B。
莊錦烽,高科技 VOC 管理與控制技術研析,工業污染防治 第 106 期(Apr. 2008) 185。
電子全文 電子全文(網際網路公開日期:20280830)
第一頁 上一頁 下一頁 最後一頁 top