|
1.Arivudainambi, D., & Godhandaraman, P. (2015). Retrial queueing system with balking, optional service and vacation. Annals of Operations Research, 229, 67–84. https://doi.org/10.1007/s10479-014-1765-5 2.Burnetas, A., & Economou, A. (2007). Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems, 56, 213-228. https://doi.org/10.1007/s11134-007-9036-7 3.Choudhury, G., & Paul, M. (2006). A batch arrival queue with a second optional service channel under N-policy. Stochastic Analysis and Applications, 24(1), 1-21. https://doi.org/10.1080/07362990500397277 4.Doshi, B. T. (1986). Queueing systems with vacations—a survey. Queueing Systems, 1, 29-66. https://doi.org/10.1007/BF01149327 5.Edelson, N. M., & Hilderbrand, D. K. (1975). Congestion tolls for Poisson queuing processes. Econometrica: Journal of the Econometric Society, 43(1), 81-92. https://www.jstor.org/stable/1913415 6.Hassin, R. (2016). Rational Queueing. Boca Raton: CRC Press. 7.Hassin, R., & Haviv, M. (2003). To Queue or Not to Queue Equilibrium Behavior in Queueing Systems. Boston: Kluwer Academic Publishers. 8.Jain, M., & Chauhan, D. (2012). Working vacation queue with second optional service and unreliable server. International Journal of Engineering, 25(3), 223-230. doi:10.5829/idosi.ije.2012.25.03c.06 9.Jain, M., & Kaur, S. (2021). Bernoulli vacation model for MX/G/1 unreliable server retrial queue with bernoulli feedback, balking and optional service. RAIRO-Operations Research, 55, S2027-S2053. https://doi.org/10.1051/ro/2020074 10.Jin, S., Wu, H., Yue, W., & Takahashi, Y. (2020). Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial and Management Optimization, 16(5), 2407-2424. http://dx.doi.org/10.3934/jimo.2019060 11.Ke, J.-C., Wu, C.-H., & Pearn, W. L. (2013). Analysis of an infinite multi-server queue with an optional service. Computers & Industrial Engineering, 65(2), 216-225. https://doi.org/10.1016/j.cie.2013.02.017 12.Ke, J.-C., Wu, C.-H., & Zhang, Z. G. (2010). Recent developments in vacation queueing models: a short survey. International Journal of Operations Research, 7(4), 3-8. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8e1b430bee1e68d194dc18548296088a0c636850 13.Li, X., Wang, J., & Zhang, F. (2014). New results on equilibrium balking strategies in the single-server queue with breakdowns and repairs. Applied Mathematics and Computation, 241, 380-388. https://www.sciencedirect.com/science/article/abs/pii/S0096300314006900?via%3Dihub 14.Liu, J., & Wang, J. (2017). Strategic joining rules in a single server Markovian queue with Bernoulli vacation. Operational Research, 17, 413-434. doi:10.1007/s12351-016-0231-3 15.Madan, K. (2000). An M/G/1 queue with second optional service. Queueing Systems, 34, 37-46. https://link.springer.com/article/10.1023/A:1019144716929 16.Madheswari, S. P., Kumar, B. K., & Suganthi, P. (2019). Analysis of M/G/1 retrial queues with second optional service and customer balking under two types of Bernoulli vacation schedule. RAIRO-Operations Research, 53(2), 415-443. https://doi.org/10.1051/ro/2017029 17.Maraghi, F. A., Madan, K. C., & Darby-Dowman, K. (2010). Batch arrival vacation queue with second optional service and random system breakdowns. Journal of Statistical Theory and Practice, 4(1), 137-153. https://doi.org/10.1080/15598608.2010.10411977 18.Medhi, J. (2002). A single server Poisson input queue with a second optional channel. Queueing Systems, 42, 239–242. https://link.springer.com/article/10.1023/A:1020519830116 19.Naor, P. (1969). The regulation of queue size by levying tolls. Econometrica: Journal of the Econometric Society, 37(1), 15-24. https://www.jstor.org/stable/1909200 20.Panda, G., & Goswami, V. (2022). Equilibrium joining strategies of positive customers in a Markovian queue with negative arrivals and working vacations. Methodology and Computing in Applied Probability, 24, 1439-1466. https://doi.org/10.1007/s11009-021-09864-8 21.Sun, W., Li, S., & E, C. (2016). Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy. Applied Mathematical Modelling, 40(1), 284-301.https://doi.org/10.1016/j.apm.2015.04.045 22.Sun, W., Li, S., & Li, Q.-L. (2014). Equilibrium balking strategies of customers in Markovian queues with two-stage working vacations. Applied Mathematics and Computation, 248, 195-214. https://doi.org/10.1016/j.amc.2014.09.116 23.Takagi, H. (1991). Queueing Analysis : A Foundation of Performance Evaluation. Amsterdam, North-Holland. 24.Tian, N., & Zhang, Z. G. (2006). Vacation Queueing Models: Theory and Applications. NewYork: Springer Science & Business Media. 25.Tian, R. (2019). Social optimization and pricing strategies in unobservable queues with delayed multiple vacations. Mathematical Problems in Engineering, 2019, Article ID 4684957. 26.Tian, R., & Wang, Y. (2020). Optimal strategies and pricing analysis in M/M/1 queues with a single working vacation and multiple vacations. RAIRO Operations Research, 54, 1593-1612. https://doi.org/10.1051/ro/2019114 27.Upadhyaya, S. (2016). Queueing systems with vacation: an overview. International Journal of Mathematics in Operational Research, 9(2), 167-213. https://doi.org/10.1504/IJMOR.2016.077997 28.Vijaya Laxmi, P., & Jyothsna, K. (2022). Cost and revenue analysis of an impatient customer queue with second optional service and working vacations. Communications in Statistics-Simulation and Computation, 51(8), 4799-4814. https://doi.org/10.1080/03610918.2020.1752378 29.Wang, J. (2004). An M/G/1 queue with second optional service and server breakdowns. Computers & Mathematics with Applications, 47(10-11), 1713-1723. https://doi.org/10.1016/j.camwa.2004.06.024 30.Wu, J., Liu, Z., & Peng, Y. (2009). On the BMAP/G/1 G-queues with second optional service and multiple vacations. Applied Mathematical Modelling, 33(12), 4314-4325. https://doi.org/10.1016/j.apm.2009.03.013 31.Xu, B., & Xu, X. (2018). Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs. Operational Research, 18, 273-292. https://doi.org/10.1007/s12351-016-0264-7 32.Yang, D. Y., & Chen, Y. H. (2018). Computation and optimization of a working breakdown queue with second optional service. Journal of Industrial and Production Engineering, 35(3), 181-188. https://doi.org/10.1080/21681015.2018.1439113 33.Yu, S., Liu, Z., & Wu, J. (2016). Equilibrium strategies of the unobservable M/M/1 queue with balking and delayed repairs. Applied Mathematics and Computation, 290, 56-65. https://doi.org/10.1016/j.amc.2016.05.049 34.Yue, D., Yue, W., & Li, X. (2011). Analysis of a two-phase queueing system with impatient customers and multiple vacations. The Tenth International Symposium on Operations Research and Its Applications, 292-298. 35.Zhang, F., & Wang, J. (2011). Equilibrium analysis of the observable queue with balking and delayed repairs. Applied Mathematics and Computation, 218, 2716-2729. https://doi.org/10.1016/j.amc.2011.08.012 36.Zhang, F., Wang, J., & Liu, B. (2013). Equilibrium balking strategies in Markovian queues with working vacations. Applied Mathematical Modelling, 37(16-17), 8264-8282. https://doi.org/10.1016/j.apm.2013.03.049
|