跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴吟穎
研究生(外文):Dai, Yin-Ying
論文名稱:具有多重休假與第二可選擇服務之不可觀察排隊系統的均衡策略分析
論文名稱(外文):Equilibrium Strategy Analysis of Unobservable Queueing Systems with Multiple Vacations and Second Optional Service
指導教授:楊東育楊東育引用關係
指導教授(外文):Yang, Dong-Yuh
學位類別:碩士
校院名稱:國立臺北商業大學
系所名稱:資訊與決策科學研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:40
中文關鍵詞:均衡策略多重休假機率生成函數第二可選擇服務不可觀察排隊
外文關鍵詞:equilibrium strategymultiple vacationsprobability generating functionsecond optional serviceunobservable queue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
表目錄 v
圖目錄 vi
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 問題描述 7
1.4 論文架構 9
第二章、 幾乎不可觀察的情況 11
2.1 系統穩態條件 11
2.2 顧客期望逗留時間 13
2.3 均衡策略分析 16
第三章、 完全不可觀察的情況 24
3.1 顧客期望逗留時間 24
3.2 均衡策略分析 25
3.3 社會最佳策略 27
第四章、 數值結果 29
第五章、 結論與未來研究 34
5.1 結論 34
5.2 未來研究 35
參考文獻 36
1.Arivudainambi, D., & Godhandaraman, P. (2015). Retrial queueing system with balking, optional service and vacation. Annals of Operations Research, 229, 67–84. https://doi.org/10.1007/s10479-014-1765-5
2.Burnetas, A., & Economou, A. (2007). Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems, 56, 213-228. https://doi.org/10.1007/s11134-007-9036-7
3.Choudhury, G., & Paul, M. (2006). A batch arrival queue with a second optional service channel under N-policy. Stochastic Analysis and Applications, 24(1), 1-21. https://doi.org/10.1080/07362990500397277
4.Doshi, B. T. (1986). Queueing systems with vacations—a survey. Queueing Systems, 1, 29-66. https://doi.org/10.1007/BF01149327
5.Edelson, N. M., & Hilderbrand, D. K. (1975). Congestion tolls for Poisson queuing processes. Econometrica: Journal of the Econometric Society, 43(1), 81-92. https://www.jstor.org/stable/1913415
6.Hassin, R. (2016). Rational Queueing. Boca Raton: CRC Press.
7.Hassin, R., & Haviv, M. (2003). To Queue or Not to Queue Equilibrium Behavior in Queueing Systems. Boston: Kluwer Academic Publishers.
8.Jain, M., & Chauhan, D. (2012). Working vacation queue with second optional service and unreliable server. International Journal of Engineering, 25(3), 223-230. doi:10.5829/idosi.ije.2012.25.03c.06
9.Jain, M., & Kaur, S. (2021). Bernoulli vacation model for MX/G/1 unreliable server retrial queue with bernoulli feedback, balking and optional service. RAIRO-Operations Research, 55, S2027-S2053. https://doi.org/10.1051/ro/2020074
10.Jin, S., Wu, H., Yue, W., & Takahashi, Y. (2020). Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial and Management Optimization, 16(5), 2407-2424. http://dx.doi.org/10.3934/jimo.2019060
11.Ke, J.-C., Wu, C.-H., & Pearn, W. L. (2013). Analysis of an infinite multi-server queue with an optional service. Computers & Industrial Engineering, 65(2), 216-225. https://doi.org/10.1016/j.cie.2013.02.017
12.Ke, J.-C., Wu, C.-H., & Zhang, Z. G. (2010). Recent developments in vacation queueing models: a short survey. International Journal of Operations Research, 7(4), 3-8.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8e1b430bee1e68d194dc18548296088a0c636850
13.Li, X., Wang, J., & Zhang, F. (2014). New results on equilibrium balking strategies in the single-server queue with breakdowns and repairs. Applied Mathematics and Computation, 241, 380-388.
https://www.sciencedirect.com/science/article/abs/pii/S0096300314006900?via%3Dihub
14.Liu, J., & Wang, J. (2017). Strategic joining rules in a single server Markovian queue with Bernoulli vacation. Operational Research, 17, 413-434. doi:10.1007/s12351-016-0231-3
15.Madan, K. (2000). An M/G/1 queue with second optional service. Queueing Systems, 34, 37-46. https://link.springer.com/article/10.1023/A:1019144716929
16.Madheswari, S. P., Kumar, B. K., & Suganthi, P. (2019). Analysis of M/G/1 retrial queues with second optional service and customer balking under two types of Bernoulli vacation schedule. RAIRO-Operations Research, 53(2), 415-443. https://doi.org/10.1051/ro/2017029
17.Maraghi, F. A., Madan, K. C., & Darby-Dowman, K. (2010). Batch arrival vacation queue with second optional service and random system breakdowns. Journal of Statistical Theory and Practice, 4(1), 137-153.
https://doi.org/10.1080/15598608.2010.10411977
18.Medhi, J. (2002). A single server Poisson input queue with a second optional channel. Queueing Systems, 42, 239–242.
https://link.springer.com/article/10.1023/A:1020519830116
19.Naor, P. (1969). The regulation of queue size by levying tolls. Econometrica: Journal of the Econometric Society, 37(1), 15-24.
https://www.jstor.org/stable/1909200
20.Panda, G., & Goswami, V. (2022). Equilibrium joining strategies of positive customers in a Markovian queue with negative arrivals and working vacations. Methodology and Computing in Applied Probability, 24, 1439-1466. https://doi.org/10.1007/s11009-021-09864-8
21.Sun, W., Li, S., & E, C. (2016). Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy. Applied Mathematical Modelling, 40(1), 284-301.https://doi.org/10.1016/j.apm.2015.04.045
22.Sun, W., Li, S., & Li, Q.-L. (2014). Equilibrium balking strategies of customers in Markovian queues with two-stage working vacations. Applied Mathematics and Computation, 248, 195-214. https://doi.org/10.1016/j.amc.2014.09.116
23.Takagi, H. (1991). Queueing Analysis : A Foundation of Performance Evaluation. Amsterdam, North-Holland.
24.Tian, N., & Zhang, Z. G. (2006). Vacation Queueing Models: Theory and Applications. NewYork: Springer Science & Business Media.
25.Tian, R. (2019). Social optimization and pricing strategies in unobservable queues with delayed multiple vacations. Mathematical Problems in Engineering, 2019, Article ID 4684957.
26.Tian, R., & Wang, Y. (2020). Optimal strategies and pricing analysis in M/M/1 queues with a single working vacation and multiple vacations. RAIRO Operations Research, 54, 1593-1612. https://doi.org/10.1051/ro/2019114
27.Upadhyaya, S. (2016). Queueing systems with vacation: an overview. International Journal of Mathematics in Operational Research, 9(2), 167-213. https://doi.org/10.1504/IJMOR.2016.077997
28.Vijaya Laxmi, P., & Jyothsna, K. (2022). Cost and revenue analysis of an impatient customer queue with second optional service and working vacations. Communications in Statistics-Simulation and Computation, 51(8), 4799-4814. https://doi.org/10.1080/03610918.2020.1752378
29.Wang, J. (2004). An M/G/1 queue with second optional service and server breakdowns. Computers & Mathematics with Applications, 47(10-11), 1713-1723. https://doi.org/10.1016/j.camwa.2004.06.024
30.Wu, J., Liu, Z., & Peng, Y. (2009). On the BMAP/G/1 G-queues with second optional service and multiple vacations. Applied Mathematical Modelling, 33(12), 4314-4325. https://doi.org/10.1016/j.apm.2009.03.013
31.Xu, B., & Xu, X. (2018). Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs. Operational Research, 18, 273-292. https://doi.org/10.1007/s12351-016-0264-7
32.Yang, D. Y., & Chen, Y. H. (2018). Computation and optimization of a working breakdown queue with second optional service. Journal of Industrial and Production Engineering, 35(3), 181-188. https://doi.org/10.1080/21681015.2018.1439113
33.Yu, S., Liu, Z., & Wu, J. (2016). Equilibrium strategies of the unobservable M/M/1 queue with balking and delayed repairs. Applied Mathematics and Computation, 290, 56-65. https://doi.org/10.1016/j.amc.2016.05.049
34.Yue, D., Yue, W., & Li, X. (2011). Analysis of a two-phase queueing system with impatient customers and multiple vacations. The Tenth International Symposium on Operations Research and Its Applications, 292-298.
35.Zhang, F., & Wang, J. (2011). Equilibrium analysis of the observable queue with balking and delayed repairs. Applied Mathematics and Computation, 218, 2716-2729. https://doi.org/10.1016/j.amc.2011.08.012
36.Zhang, F., Wang, J., & Liu, B. (2013). Equilibrium balking strategies in Markovian queues with working vacations. Applied Mathematical Modelling, 37(16-17), 8264-8282. https://doi.org/10.1016/j.apm.2013.03.049
電子全文 電子全文(網際網路公開日期:20280731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top