跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡咏芯
研究生(外文):CAI, YONG-XIN
論文名稱:非生酮性低碳水化合物飲食結合間歇訓練對代謝健康風險指標的影響
論文名稱(外文):Effect of a non-ketogenic low-carbohydrate diet combined with interval training on metabolic health risk biomarkers.
指導教授:廖翊宏廖翊宏引用關係
指導教授(外文):LIAO, YI-HUNG
口試委員:陳宗與詹貴惠
口試委員(外文):CHEN, CHUNG-YUCHAN, KUEI-HUI
口試日期:2023-06-01
學位類別:碩士
校院名稱:國立臺北護理健康大學
系所名稱:運動保健研究所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:56
中文關鍵詞:非生酮性低碳水化合物飲食間歇訓練代謝健康
外文關鍵詞:non-ketogeniclow-carbohydrate dietinterval trainingmetabolic health
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低碳水化合物飲食可以減輕體重、改善身體組成,而中等強度連續訓練或高強度間歇訓練可以改善心肺適能,但尚不清楚非生酮性低碳水化合物飲食結合中、高強度間歇訓練對代謝健康風險指標的效益。本研究目的是介入兩週非生酮性低碳水化合物飲食與中、高強度間歇訓練對於年輕男性的身體組成、血壓及血液生化值的影響。研究方法:17名具規律運動習慣 (VO2 peak : 44.6 ± 2 ml/kg/min) 的年輕男性 (年齡 : 22.9 ± 1.1歲,BMI : 23.2 ± 0.8 kg/m2),參與者隨機分配到低碳水化合物飲食組 (low carbohydrate, LC) (n = 9;CHO : ~25%) 和正常碳水化合物飲食組 (normal carbohydrate, NC) (n = 8;CHO : ~55%),兩組都介入為期兩週的相同中、高強度間歇訓練,在為期2週的介入前後測量身體組成、血壓及血液生化值。研究結果:在改善身體組成、血壓及血液生化值具顯著差異 (體脂率 : p = 0.011, 肌肉指數 : p = 0.013, 脂肪指數 : p = 0.015, 舒張壓 : p = 0.034, 三酸甘油酯 : p = 0.042)。而在腰臀圍比、收縮壓及其餘血液生化值 (總膽固醇、游離脂肪酸、低密度膽固醇脂肪酸和高密度膽固醇脂肪酸) 各組之間沒有顯著差異。即使低碳水化合物飲食明顯降低胰島素與胰島素阻抗指數 (homeostasis model assessment-insulin resistance index, HOMA-IR),但這些變化與NC組之間沒有顯著差異。結論:短期低碳水化合物飲食顯示出各種身體參數的改善優於正常碳水化合物飲食。本研究證明,兩週的非生酮性低碳水化合物飲食結合中、高強度間歇訓練,可以改善年輕男性的代謝健康風險指標,包括胰島素阻抗趨近改變,並改善身體組成、降低舒張壓及三酸甘油酯。
The low-carbohydrate diet can reduce weight and improve body composition, while moderate-intensity continuous training or high-intensity interval training can improve cardiorespiratory fitness. However, the benefit of a non-ketogenic low-carbohydrate diet combined with moderate-high-intensity interval training on metabolic health risk biomarkers is unknown. The purpose of this study was to intervene in the effects of two weeks of a non-ketogenic low-carbohydrate diet and moderate-high-intensity interval training on body composition, blood pressure, and blood biochemical values in young men. Study methods: 17 young men (age: 22.9 ± 1.1 years, BMI: 23.2 ± 0.8 kg/m2) had regular exercise habits (VO2 peak : 44.6 ± 2 ml/kg/min), The participants were randomly assigned to low carbohydrate diet (LC) (n = 9; CHO: ~25%) and normal carbohydrate diet (NC) (n = 8; CHO: ~55%), both interventions the same moderate-high intensity interval training during two weeks, They’re body composition, blood pressure and blood biochemical values were measured before and after the 2 weeks intervention. The study results: There were significant differences in improving body composition, blood pressure and blood biochemical values (body fat percentage: p = 0.011, muscle index: p = 0.013, fat index: p = 0.015, diastolic blood pressure: p = 0.034, triglycerides: p = 0.042). There were insignificant between groups in waist-hip ratio, systolic blood pressure, and other blood biochemical values (total cholesterol, free fatty acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol). Even though the low-carbohydrate diet significantly reduced insulin and the homeostasis model assessment-insulin resistance index (HOMA-IR), these changes were insignificant compared with the NC group. Conclusions: Short-term low-carbohydrate diets shown improvements in various body parameters over normal carbohydrate diets. This study has been improved during two weeks of a non-ketogenic low-carbohydrate diet combined with moderate-high-intensity interval training resulted in near-changes in HOMA-IR, improved body composition, and reduced metabolic health risk biomarkers such as diastolic blood pressure and triglycerides in young mens.
摘 要 i
ABSTRACT ii
目 次 iv
表 次 vi
圖 次 vii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究假設 3
第四節 操作型定義 3
第二章 文獻探討 5
第一節 影響代謝健康之負面因子 5
第二節 不同飲食型態對代謝健康效益 7
第三節 運動對代謝健康效益 15
第四節 飲食結合運動對代謝健康效益 22
第三章 研究方法 29
第一節 參與者 29
第二節 實驗設計 29
第三節 飲食熱量計算 31
第四節 人體測量 32
第五節 最大攝氧峰值測試 32
第六節 運動介入 33
第七節 血液指標 33
第八節 統計分析 34
第四章 研究結果 35
第一節 研究參與者基本資料 35
第二節 飲食紀錄 37
第三節 身體組成 38
第四節 血壓 40
第五節 血液生化值 40
第五章 討論 42
第六章 結論與未來研究建議 47
參考文獻 48
中文部分 48
外文部分 48
附錄 54
附錄一 快刀中文相似度比對報告書 54
附錄二 原創性比對檢核表 55
附錄三 人體試驗核准證明 56
參考文獻
王錠堯(2012)。高強度間歇訓練中不同氧氣濃度恢復對壓力與耐力指標的影響。﹝博士論文。國立體育大學﹞臺灣博碩士論文知識加值系統。

Al Aamri, K. S., Alrawahi, A. H., Al Busaidi, N., Al Githi, M. S., Al Jabri, K., Al Balushi, F., Ronquillo-Talara, R., Al Balushi, S., & Waly, M. (2022). The effect of low-carbohydrate ketogenic diet in the management of obesity compared with low caloric, low-fat diet. Clinical Nutrition ESPEN, 49, 522-528.

Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J. C., James, W. P., Loria, C. M., & Smith, S. C., Jr. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 120(16), 1640-1645.

Atakan, M. M., Li, Y., Koşar Ş, N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: a review with historical perspective. International Journal of Environmental Research and Public Health, 18(13).

Azadbakht, L., Mirmiran, P., Esmaillzadeh, A., Azizi, T., & Azizi, F. (2005). Beneficial effects of a dietary approaches to stop hypertension eating plan on features of the metabolic syndrome. Diabetes Care, 28(12), 2823-2831.

Bazzano, L. A., Hu, T., Reynolds, K., Yao, L., Bunol, C., Liu, Y., Chen, C. S., Klag, M. J., Whelton, P. K., & He, J. (2014). Effects of low-carbohydrate and low-fat diets: a randomized trial. Annals of Internal Medicine, 161(5), 309-318.

Boyle, K. E., Canham, J. P., Consitt, L. A., Zheng, D., Koves, T. R., Gavin, T. P., Holbert, D., Neufer, P. D., Ilkayeva, O., Muoio, D. M., & Houmard, J. A. (2011). A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals. The Journal of Clinical Endocrinology and Metabolism, 96(3), 775-781.

Buttar, K. K., Saboo, N., & Kacker, S. (2019). A review: maximal oxygen uptake (vo2 max) and its estimation methods. International Journal of Physical Education, Sports and Health, 6, 24-32.

Cipryan, L., Dostal, T., Litschmannova, M., Hofmann, P., Maffetone, P. B., & Laursen, P. B. (2021). Effects of a very low-carbohydrate high-fat diet and high-intensity interval training on visceral fat deposition and cardiorespiratory fitness in overfat individuals: a randomized controlled clinical trial. Frontiers in Nutrition 8, 785694.

Cipryan, L., Dostal, T., Plews, D. J., Hofmann, P., & Laursen, P. B. (2021). Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: a non-randomized, parallel design study. Nutrition Research, 87, 22-30.

Cipryan, L., Plews, D. J., Ferretti, A., Maffetone, P. B., & Laursen, P. B. (2018). Effects of a 4-week very low-carbohydrate diet on high-intensity interval training responses. Journal of Sports Science and Medicine, 17(2), 259-268.

Cockcroft, E. J., Bond, B., Williams, C. A., Harris, S., Jackman, S. R., Armstrong, N., & Barker, A. R. (2019). The effects of two weeks high-intensity interval training on fasting glucose, glucose tolerance and insulin resistance in adolescent boys: a pilot study. BMC Sports Science Medicine and Rehabilitation, 11, 29.

De Strijcker, D., Lapauw, B., Ouwens, D. M., Van de Velde, D., Hansen, D., Petrovic, M., Cuvelier, C., Tonoli, C., & Calders, P. (2018). High intensity interval training is associated with greater impact on physical fitness, insulin sensitivity and muscle mitochondrial content in males with overweight/obesity, as opposed to continuous endurance training: a randomized controlled trial. Journal of Musculoskelet and Neuronal Interactions, 18(2), 215-226.

Engin, A. (2017). The definition and prevalence of obesity and metabolic syndrome. Advances in Experimental Medicine and Biology, 960, 1-17.

Ferguson-Stegall, L., McCleave, E. L., Ding, Z., Doerner, P. G., 3rd, Wang, B., Liao, Y. H., Kammer, L., Liu, Y., Hwang, J., Dessard, B. M., & Ivy, J. L. (2011). Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. Journal of Strength and Conditioning Research, 25(5), 1210-1224.

Fisher, G., Brown, A. W., Bohan Brown, M. M., Alcorn, A., Noles, C., Winwood, L., Resuehr, H., George, B., Jeansonne, M. M., & Allison, D. B. (2015). High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One, 10(10), e0138853.

Fletcher, G. F., Balady, G., Blair, S. N., Blumenthal, J., Caspersen, C., Chaitman, B., Epstein, S., Sivarajan Froelicher, E. S., Froelicher, V. F., Pina, I. L., & Pollock, M. L. (1996). Statement on exercise: benefits and recommendations for physical activity programs for all americans. a statement for health professionals by the committee on exercise and cardiac rehabilitation of the council on clinical cardiology, american heart association. Circulation, 94(4), 857-862.

Frankenfield, D., Roth-Yousey, L., & Compher, C. (2005). Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. Journal of the AMERICAN DIETETIC ASSOCIATION, 105(5), 775-789.

Gallardo-Alfaro, L., Bibiloni, M. D. M., Mascaró, C. M., Montemayor, S., Ruiz-Canela, M., Salas-Salvadó, J., Corella, D., Fitó, M., Romaguera, D., Vioque, J., Alonso-Gómez Á, M., Wärnberg, J., Martínez, J. A., Serra-Majem, L., Estruch, R., Fernández-García, J. C., Lapetra, J., Pintó, X., García Ríos, A., . . . Tur, J. A. (2020). Leisure-time physical activity, sedentary behaviour and diet quality are associated with metabolic syndrome severity: the PREDIMED-plus study. Nutrients, 12(4).

Giani, M., Rezoagli, E., Grassi, A., Porta, M., Riva, L., Famularo, S., Barbaro, A., Bernasconi, D., Ippolito, D., Bellani, G., Braga, M., Foti, G., Gianotti, L., & Giani, A. (2022). Low skeletal muscle index and myosteatosis as predictors of mortality in critically ill surgical patients. Nutrition, 101, 111687.

Gillen, J. B., West, D. W. D., Williamson, E. P., Fung, H. J. W., & Moore, D. R. (2019). Low-carbohydrate training increases protein requirements of endurance athletes. Medicine & Science in Sports & Exercise, 51(11), 2294-2301.

Großek, A., Elter, T., Oberste, M., Wolf, F., Joisten, N., Hartig, P., Walzik, D., Rosenberger, F., Kiesl, D., Wahl, P., Bloch, W., & Zimmer, P. (2021). Feasibility and suitability of a graded exercise test in patients with aggressive hemato-oncological disease. Support Care Cancer, 29(8), 4859-4866.

Harvie, M., Wright, C., Pegington, M., McMullan, D., Mitchell, E., Martin, B., Cutler, R. G., Evans, G., Whiteside, S., Maudsley, S., Camandola, S., Wang, R., Carlson, O. D., Egan, J. M., Mattson, M. P., & Howell, A. (2013). The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. British Journal of Nutrition, 110(8), 1534-1547.

He, Y., Li, Y., Lai, J., Wang, D., Zhang, J., Fu, P., Yang, X., & Qi, L. (2013). Dietary patterns as compared with physical activity in relation to metabolic syndrome among chinese adults. Nutrition, Metabolism and Cardiovascular Diseases, 23(10), 920-928.

Ho, S. S., Dhaliwal, S. S., Hills, A. P., & Pal, S. (2012). The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health, 12, 704.

Hyde, P. N., Sapper, T. N., Crabtree, C. D., LaFountain, R. A., Bowling, M. L., Buga, A., Fell, B., McSwiney, F. T., Dickerson, R. M., Miller, V. J., Scandling, D., Simonetti, O. P., Phinney, S. D., Kraemer, W. J., King, S. A., Krauss, R. M., & Volek, J. S. (2019). Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight, 4(12).

Kim, I. Y., Park, S., Trombold, J. R., & Coyle, E. F. (2014). Effects of moderate- and intermittent low-intensity exercise on postprandial lipemia. Medicine & Science in Sports & Exercise, 46(10), 1882-1890.

Ko, K., Woo, J., Bae, J. Y., Roh, H. T., Lee, Y. H., & Shin, K. O. (2018). Exercise training improves intramuscular triglyceride lipolysis sensitivity in high-fat diet induced obese mice. Lipids Health Dis, 17(1), 81.

Kong, Z., Hu, M., Liu, Y., Shi, Q., Zou, L., Sun, S., Zhang, H., & Nie, J. (2020). Affective and enjoyment responses to short-term high-intensity interval training with low-carbohydrate diet in overweight young women. Nutrients, 12(2).

Park, Y. W., Zhu, S., Palaniappan, L., Heshka, S., Carnethon, M. R., & Heymsfield, S. B. (2003). The metabolic syndrome: prevalence and associated risk factor findings in the US population from the third national health and nutrition examination survey, 1988-1994. Archives of Internal Medicine, 163(4), 427-436.

Perissiou, M., Borkoles, E., Kobayashi, K., & Polman, R. (2020). The effect of an 8 week prescribed exercise and low-carbohydrate diet on cardiorespiratory fitness, body composition and cardiometabolic risk factors in obese individuals: a randomised controlled trial. Nutrients, 12(2).

Ramirez-Marrero, F. A., Edens, K. L., Joyner, M. J., & Curry, T. B. (2014). Predicted vs. actual resting energy expenditure and activity coefficients: post-gastric bypass, lean and obese women. Obesity Control Therapies, 1(2), 1-7.

Ramírez-Vélez, R., Izquierdo, M., Castro-Astudillo, K., Medrano-Mena, C., Monroy-Díaz, A. L., Castellanos-Vega, R. D. P., Triana-Reina, H. R., & Correa-Rodríguez, M. (2020). Weight loss after 12 weeks of exercise and/or nutritional guidance is not obligatory for induced changes in local fat/lean mass indexes in adults with excess of adiposity. Nutrients, 12(8).

Retterstøl, K., Svendsen, M., Narverud, I., & Holven, K. B. (2018). Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: a randomized controlled study. Atherosclerosis, 279, 52-61.

Reynolds, K., & He, J. (2005). Epidemiology of the metabolic syndrome. The American Journal of the Medical Sciences, 330(6), 273-279.

Rodríguez-López, C. P., González-Torres, M. C., Aguilar-Salinas, C. A., & Nájera-Medina, O. (2021). DASH diet as a proposal for improvement in cellular immunity and its association with metabolic parameters in persons with overweight and obesity. Nutrients, 13(10). https://doi.org/10.3390/nu13103540

Rosenkilde, M., Rygaard, L., Nordby, P., Nielsen, L. B., & Stallknecht, B. (2018). Exercise and weight loss effects on cardiovascular risk factors in overweight men. Journal of Applied Physiology (1985), 125(3), 901-908.

Ruth, M. R., Port, A. M., Shah, M., Bourland, A. C., Istfan, N. W., Nelson, K. P., Gokce, N., & Apovian, C. M. (2013). Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers c-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism, 62(12), 1779-1787.

Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W., & Shapi'i, A. (2021). A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers Biology Medicine, 136, 104754.

Shemirani, F., Djafarian, K., Fotouhi, A., Azadbakht, L., Rezaei, N., Chamari, M., Shabani, S., & Mahmoudi, M. (2022). Effect of paleolithic-based low-carbohydrate vs. moderate-carbohydrate diets with portion-control and calorie-counting on CTRP6, asprosin and metabolic markers in adults with metabolic syndrome: a randomized clinical trial. Clinical Nutrition ESPEN, 48, 87-98.

Sun, S., Kong, Z., Shi, Q., Hu, M., Zhang, H., Zhang, D., & Nie, J. (2019). Non-energy-restricted low-carbohydrate diet combined with exercise intervention improved cardiometabolic health in overweight chinese females. Nutrients, 11(12).

Sun, S., Kong, Z., Shi, Q., Zhang, H., Lei, O. K., & Nie, J. (2021). Carbohydrate restriction with or without exercise training improves blood pressure and insulin sensitivity in overweight women. Healthcare (Basel), 9(6).

Tamura, Y., Tanaka, Y., Sato, F., Choi, J. B., Watada, H., Niwa, M., Kinoshita, J., Ooka, A., Kumashiro, N., Igarashi, Y., Kyogoku, S., Maehara, T., Kawasumi, M., Hirose, T., & Kawamori, R. (2005). Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. The Journal of Clinical Endocrinology & Metabolism, 90(6), 3191-3196.

Trombold, J. R., Christmas, K. M., Machin, D. R., Kim, I. Y., & Coyle, E. F. (2013). Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. Journal Applied Physiology (1985), 114(6), 792-800.

Uusitupa, M., Hermansen, K., Savolainen, M. J., Schwab, U., Kolehmainen, M., Brader, L., Mortensen, L. S., Cloetens, L., Johansson-Persson, A., Onning, G., Landin-Olsson, M., Herzig, K. H., Hukkanen, J., Rosqvist, F., Iggman, D., Paananen, J., Pulkki, K. J., Siloaho, M., Dragsted, L., . . . Akesson, B. (2013). Effects of an isocaloric healthy nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome -- a randomized study (SYSDIET). Journal of Internal Medicine, 274(1), 52-66.

Wachsmuth, N. B., Aberer, F., Haupt, S., Schierbauer, J. R., Zimmer, R. T., Eckstein, M. L., Zunner, B., Schmidt, W., Niedrist, T., Sourij, H., & Moser, O. (2022). The impact of a high-carbohydrate/low fat vs. low-carbohydrate diet on performance and body composition in physically active adults: a cross-over controlled trial. Nutrients, 14(3).

Wan, Y., Wang, F., Yuan, J., Li, J., Jiang, D., Zhang, J., Huang, T., Zheng, J., Mann, J., & Li, D. (2017). Effects of macronutrient distribution on weight and related cardiometabolic profile in healthy non-obese chinese: a 6-month, randomized controlled-feeding trial. EBioMedicine, 22, 200-207.

Webster, C. C., van Boom, K. M., Armino, N., Larmuth, K., Noakes, T. D., Smith, J. A., & Kohn, T. A. (2020). Reduced glucose tolerance and skeletal muscle GLUT4 and IRS1 content in cyclists habituated to a long-term low-carbohydrate, high-fat diet. in International Journal of Sport Nutrition and Exercise Metabolism, 30(3), 210–217.

Zinn, C., McPhee, J., Harris, N., Williden, M., Prendergast, K., & Schofield, G. (2017). A 12-week low-carbohydrate, high-fat diet improves metabolic health outcomes over a control diet in a randomised controlled trial with overweight defence force personnel. Applied Physiology Nutrition Metabolism, 42(11), 1158-1164.

電子全文 電子全文(網際網路公開日期:20251231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top