( 您好!臺灣時間:2024/05/25 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Tu, Kevin L.K.
論文名稱(外文):Development of a multi-turn dialogue chatbot system: A case of trilateral virtual reality student counselling and communication system
指導教授(外文):Trappey, Amy J. C.
口試委員(外文):Hwang, Sheue-LingWang, Tong-Mei
外文關鍵詞:School stressesOnline counselingVirtual realityVirtual psychotherapyCounseling chatbotConversational sentiment analysis
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
College students experience heightened stress during the era of information overload. This stress stems from various sources, such as studies, family, friends, work, and finance, and has become increasingly prevalent. However, counseling resources are often limited, and students require prompt and multiple therapy sessions to avoid making matters worse. To address these challenges, this study proposes a trilateral counseling system consisting of two chatrooms and a chatbot. The novelty of this system is trilateral conversations, which involve a student, a counselor, and the chatbot, having therapy sessions together within a virtual reality (VR) chatroom. Additionally, a web-based chatroom is available for situations where VR access is inconvenient. Our chatbot, equipped with three crucial modules, including natural language understanding (NLU), dialogue management (DM), and natural language generation (NLG), are able to initiate multi-turn conversations with the student. Its knowledge base is built upon frequently asked questions (FAQs) in psychological counseling. Thanks to these three modules, the system effectively identifies student issues and emotions during conversations, allows therapy sessions to follow predetermined scenarios, and provides timely suggestions to the student. Moreover, the chatbot rephrases responses from FAQs to enhance the overall counseling experience. The counselor can oversee the therapy session and offer professional advice whenever needed. The research selects multiple model options for three modules and then evaluates their performance using metrics. The best models for each module are chosen to construct the system. Furthermore, feedback from counselors that are experienced in school counseling is obtained to gather their opinions on the system and provide insights for further research development.
摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VI
1 Introduction 1
1.1 Research background 1
1.2 Research purpose 2
1.3 Research framework 3
2 Literature Review 5
2.1 Psychotherapy used for student stress 5
2.2 Healthcare applications using immersive technologies 7
2.3 Advanced chatbots with natural language conversation capability 10
3 System Framework and Key Methodologies 17
3.1 System framework 17
3.2 Avatar-based chatroom jointed by student, counselor, and chatbot 18
3.3 Empathy-centric counseling NLP chatbot 22
4 System Implementation 27
4.1 Chatroom interface 27
4.2 Preparing dataset 28
4.3 Natural language understanding (NLU) 32
4.4 Dialogue management (DM) 33
4.5 Natural language generation (NLG) 34
4.6 Counseling case scenarios and demonstrations 36
5 Prototype System Verification and Evaluation 45
5.1 Module program testing 45
5.2 Evaluation feedback from domain experts 56
6 Conclusions 65
References 69
Appendix A 76
Appendix B 78
Appendix C 81
Appendix D 84
Appendix E 89
[1] Abdellatif, A., Badran, K., Costa, D., & Shihab, E. (2021). A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering. IEEE Transactions on Software Engineering, 1-1. https://doi.org/10.1109/TSE.2021.3078384
[2] Alisetti, S. V. (n.d.). Vamsi/T5_Paraphrase_Paws Hugging Face Retrieved December 13, 2022, from https://huggingface.co/Vamsi/T5_Paraphrase_Paws
[3] American Psychological Association. (2009). Different approaches to psychotherapy Retrieved October 24, 2022, from https://www.apa.org/topics/psychotherapy/approaches
[4] American School Counselor Association. (2021). School Counselor Roles & Ratios Retrieved August 9, 2022, from https://www.schoolcounselor.org/About-School-Counseling/School-Counselor-Roles-Ratios
[5] Arpaia, P., De Benedetto, E., De Paolis, L., D'Errico, G., Donato, N., & Duraccio, L. (2022). Performance and Usability Evaluation of an Extended Reality Platform to Monitor Patient's Health during Surgical Procedures. Sensors (Basel), 22(10). https://doi.org/10.3390/s22103908
[6] Bertagnolli, N. (2020). Counsel Chat: Bootstrapping High-Quality Therapy Data Towards Data Science. Retrieved August 17, 2022, from https://towardsdatascience.com/counsel-chat-bootstrapping-high-quality-therapy-data-971b419f33da
[7] Braun, D., Hernandez Mendez, A., Matthes, F., & Langen, M. (2017). Evaluating Natural Language Understanding Services for Conversational Question Answering Systems. https://doi.org/10.18653/v1/W17-5522
[8] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . . Amodei, D. (2020). Language Models are Few-Shot Learners. https://doi.org/10.48550/ARXIV.2005.14165
[9] Bunk, T., Varshneya, D., Vlasov, V., & Nichol, A. (2020). DIET: Lightweight Language Understanding for Dialogue Systems. ArXiv. https://doi.org/10.48550/arXiv.2004.09936
[10] Çavuşoğlu, D. (2021). Evaluation Metrics: Assessing the quality of NLG outputs Retrieved December 19, 2022, from https://towardsdatascience.com/evaluation-metrics-assessing-the-quality-of-nlg-outputs-39749a115ff3
[11] Chamberlain, D., Jimenez-Galindo, A., Fletcher, R. R. n., & Kodgule, R. (2016). Applying Augmented Reality to Enable Automated and Low-Cost Data Capture from Medical Devices Proceedings of the Eighth International Conference on Information and Communication Technologies and Development , articleno = 42 , numpages = 4, https://doi.org/10.1145/2909609.2909626
[12] Chen, P.-J., & Liou, W.-K. (2022). Development and Application of AR-Based Assessment System for Infant Airway Obstruction First Aid Training. Children, 9(11), 1622. https://www.mdpi.com/2227-9067/9/11/1622
[13] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. ArXiv. https://doi.org/10.48550/arXiv.1406.1078
[14] Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial Paranoia. Artificial Intelligence, 2(1), 1-25. https://doi.org/10.1016/0004-3702(71)90002-6
[15] Corey, G. (2016). Theories and Practice of Counseling & Psychotherapy (10th ed.). Brooks/Cole, Cengage Learning.
[16] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv. https://doi.org/10.48550/arXiv.1810.04805
[17] Exit Games. (n.d.). Photon Engine: Multiplayer Game Development Made Easy Retrieved August 18, 2022, from https://www.photonengine.com/en-US/Photon
[18] Explosion. (n.d.-a). English spaCy Models Documentation Retrieved December 13, 2022, from https://spacy.io/models/en
[19] Explosion. (n.d.-b). Industrial-Strength Natural Language Processing IN PYTHON Retrieved August 17, 2022, from https://spacy.io/
[20] Fast-Berglund, Å., Gong, L., & Li, D. (2018). Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manufacturing, 25, 31-38. https://doi.org/10.1016/j.promfg.2018.06.054
[21] Feng, F., Yang, Y., Cer, D. M., Arivazhagan, N., & Wang, W. (2020). Language-agnostic BERT Sentence Embedding. ArXiv. https://doi.org/10.48550/arXiv.2007.01852
[22] Ferreira, J. M. M., & Qureshi, Z. I. (2020). Use of XR technologies to bridge the gap between Higher Education and Continuing Education 2020 IEEE Global Engineering Education Conference (EDUCON), https://doi.org/10.1109/EDUCON45650.2020.9125346
[23] Galitsky, B. (2019). Chatbot Components and Architectures. In Developing Enterprise Chatbots (pp. 13-51). Springer, Cham. https://doi.org/10.1007/978-3-030-04299-8_2
[24] Gerard, S., & Christopher, B. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
[25] Gilchrist, H., & Sullivan, G. (2006). Barriers to help-seeking in young people: Community beliefs about youth suicide. Australian Social Work, 59, 73-85. https://doi.org/10.1080/03124070500449796
[26] Google. (n.d.-a). Speech-to-Text: Automatic Speech Recognition - Google Cloud Retrieved August 17, 2022, from https://cloud.google.com/speech-to-text
[27] Google. (n.d.-b). Text-to-Speech: Lifelike Speech Synthesis - Google Cloud Retrieved August 17, 2022, from https://cloud.google.com/text-to-speech
[28] Gratas, B. (2023). 50 ChatGPT Statistics and Facts You Need to Know Retrieved March 1, 2023, from https://blog.invgate.com/chatgpt-statistics
[29] Harshitha, Chaitanya, V., Killedar, S. M., Revankar, D., & Pushpa, M. S. (2019). Recognition and Prediction of Breast Cancer using Supervised Diagnosis https://doi.org/10.1109/RTEICT46194.2019.9016921
[30] Healtho. (2016). CounselChat: Mental health answers from counselors Retrieved August 17, 2022, from https://counselchat.com/
[31] Ho, C.-C., & Lin, Y.-H. (2013). Zi Shang Yu Xin Li Zhi Liao Li Lun Yu Shi Wu [Theory and Practice of Counseling and Psychotherapy]. Wu-Nan Book Inc.
[32] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
[33] IBM. (n.d.). IBM Watson Retrieved August 10, 2022, from https://www.ibm.com/watson
[34] Jeremy, B., Alyssa, C., Colleen, C., & Keith, J. R. (2019). Getting Ready for Adult Healthcare: Designing a Chatbot to Coach Adolescents with Special Health Needs Through the Transitions of Care. Journal of Pediatric Nursing, 49, 85-91. https://doi.org/10.1016/j.pedn.2019.09.004
[35] Kaur, R., Sun, R., Ziegelman, L., Sowers, R., & Hernandez, M. E. (2019). Using Virtual Reality to Examine the Neural and Physiological Responses to Height and Perturbations in Quiet Standing https://doi.org/10.1109/EMBC.2019.8857647
[36] Lee, C.-W., Wang, Y.-S., Hsu, T.-Y., Chen, K.-Y., Lee, H.-Y., & Lee, L.-s. (2018). Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis. https://doi.org/10.48550/ARXIV.1804.02504
[37] Lee, S. H., Yeh, S. C., Chan, R. C., Chen, S., Yang, G., & Zheng, L. R. (2016). Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation. Biomed Res Int, 2016, 7075464. https://doi.org/10.1155/2016/7075464
[38] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ArXiv. https://doi.org/10.48550/arXiv.1910.13461
[39] Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out (pp. 74-81). Association for Computational Linguistics. https://aclanthology.org/W04-1013
[40] Liu, Z., Xu, A., Guo, Y., Mahmud, J. U., Liu, H., & Akkiraju, R. (2018). Seemo: A Computational Approach to See Emotions Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal QC, Canada. https://doi.org/10.1145/3173574.3173938
[41] Lush, V., Buckingham, C., Edwards, S., & Bernardet, U. (2020). Towards Accessible Mental Healthcare through Augmented Reality and Self-Assessment Tools. International Journal of Online and Biomedical Engineering (iJOE), 16(04), pp. 33-42. https://doi.org/10.3991/ijoe.v16i04.12095
[42] Medeiros, L., Bosse, T., & Gerritsen, C. (2022). Can a Chatbot Comfort Humans? Studying the Impact of a Supportive Chatbot on Users' Self-Perceived Stress. IEEE Transactions on Human-Machine Systems, 52(3), 343-353. https://doi.org/10.1109/THMS.2021.3113643
[43] Microsoft. (n.d.). LUIS (Language Understanding) - Cognitive Services - Microsoft Retrieved August 10, 2022, from https://www.luis.ai/
[44] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv. https://doi.org/10.48550/arXiv.1301.3781
[45] Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digit Health, 5, 2055207619871808. https://doi.org/10.1177/2055207619871808
[46] Ni, L., Lu, C., Liu, N., & Liu, J. (2017). MANDY: Towards a Smart Primary Care Chatbot Application. In J. Chen, T. Theeramunkong, T. Supnithi, & X. Tang (Eds.), Knowledge and Systems Sciences (pp. 38-52). Springer Singapore. https://doi.org/10.1007/978-981-10-6989-5_4
[47] Ong, T., Wilczewski, H., Paige, S. R., Soni, H., Welch, B. M., & Bunnell, B. E. (2021). Extended Reality for Enhanced Telehealth During and Beyond COVID-19: Viewpoint. JMIR Serious Games, 9(3). https://doi.org/10.2196/26520
[48] OpenAI. (2022). Introducing ChatGPT Retrieved March 1, 2023, from https://openai.com/blog/chatgpt
[49] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. https://doi.org/10.48550/ARXIV.2203.02155
[50] Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A Method for Automatic Evaluation of Machine Translation Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, https://doi.org/10.3115/1073083.1073135
[51] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.html
[52] Persky, S. (2011). Employing immersive virtual environments for innovative experiments in health care communication. Patient Educ Couns, 82(3), 313-317. https://doi.org/10.1016/j.pec.2010.12.007
[53] Pola, S., & Chetty, M. S. R. (2021). Behavioral therapy using conversational chatbot for depression treatment using advanced RNN and pretrained word embeddings. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.521
[54] Preciado, C. E., Starrett, M. J., & Ekstrom, A. D. (2018). Assessment of a Short, Focused Training to Reduce Symptoms of Cybersickness. Presence: Teleoperators and Virtual Environments, 27(4), 361-377. https://doi.org/10.1162/pres_a_00335
[55] Quora. (n.d.). Quora https://www.quora.com/
[56] Raffel, C., Shazeer, N. M., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. ArXiv. https://doi.org/10.48550/arXiv.1910.10683
[57] Rasa. (2022). Policies Retrieved December 13, 2022, from https://rasa.com/docs/rasa/policies/
[58] Rasa. (n.d.). Rasa: Open source conversational AI Retrieved August 10, 2022, from https://rasa.com/
[59] RhymBil. (2023). How to MAKE and PUBLISH a Chat website with Firebase using HTML & JavaScript Retrieved May 9, 2023, from https://rhymbil.netlify.app/
[60] Rogers, C. R. (1957). The necessary and sufficient conditions of therapeutic personality change. Journal of Consulting Psychology, 21, 95-103. https://doi.org/10.1037/h0045357
[61] Rusnida, R., Fatin Nur Hazwani Binti Mohd, W., & Amar Raaj Singh, A. L. G. S. (2021). AR Heart: A Development of Healthcare Informative Application using Augmented Reality. Journal of Physics: Conference Series, 1962(1), 012065. https://doi.org/10.1088/1742-6596/1962/1/012065
[62] Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714
[63] Sai, A. B., Mohankumar, A. K., & Khapra, M. M. (2020). A Survey of Evaluation Metrics Used for NLG Systems. https://doi.org/10.48550/arxiv.2008.12009
[64] Scikit-learn developers. (2022). Matthews correlation coefficient Retrieved October 30, 2022, from https://scikit-learn.org/stable/modules/model_evaluation.html#matthews-corrcoef
[65] Serban, I. V., Sankar, C., Germain, M., Zhang, S., Lin, Z., Subramanian, S., Kim, T., Pieper, M., Chandar, S., Ke, N. R., Rajeshwar, S., Brebisson, A. d., Sotelo, J. M. R., Suhubdy, D., Michalski, V., Nguyen, A., Pineau, J., & Bengio, Y. (2017). A Deep Reinforcement Learning Chatbot. https://doi.org/10.48550/ARXIV.1709.02349
[66] Taiwan Counseling Psychologist Union. (2021). quan lian hui diao cha mei 4 wei da xue sheng you 1 ren jie shou xin li zi shang [TCPU: 1 in 4 college students receive psychological counseling]. The Liberty Times. Retrieved October 22, 2022, from https://news.ltn.com.tw/news/life/breakingnews/3725650
[67] Trappey, A., Trappey, C. V., Chang, C.-M., Tsai, M.-C., Kuo, R. R. T., & Lin, A. P. C. (2021). Virtual Reality Exposure Therapy for Driving Phobia Disorder (2): System Refinement and Verification. Applied Sciences, 11(1), 347. https://doi.org/10.3390/app11010347
[68] Trappey, A. J. C., Lin, A. P. C., Hsu, K. Y. K., Trappey, C. V., & Tu, K. L. K. (2022). Development of an Empathy-Centric Counseling Chatbot System Capable of Sentimental Dialogue Analysis. Processes, 10(5), 930. https://doi.org/10.3390/pr10050930
[69] Turing, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433
[70] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. https://doi.org/10.48550/arXiv.1706.03762
[71] Wang, W., Yang, B., Guan, C., & Li, B. (2019). A VR Combined with MI-BCI Application for Upper Limb Rehabilitation of Stroke https://doi.org/10.1109/IMBIOC.2019.8777805
[72] Warner, C. H., Appenzeller, G. N., Grieger, T., Belenkiy, S., Breitbach, J., Parker, J., Warner, C. M., & Hoge, C. (2011). Importance of Anonymity to Encourage Honest Reporting in Mental Health Screening After Combat Deployment. Archives of General Psychiatry, 68(10), 1065-1071. https://doi.org/10.1001/archgenpsychiatry.2011.112
[73] Weizenbaum, J. (1966). ELIZA—a Computer Program for the Study of Natural Language Communication between Man and Machine. Commun. ACM, 9(1), 36–45 , numpages = 10. https://doi.org/10.1145/365153.365168
[74] Woebot Health. (2017). Relational Agent for Mental Health | Woebot Health Retrieved June 13, 2023 from https://woebothealth.com
[75] Wolf, E., Merdan, N., Dölinger, N., Mal, D., Wienrich, C., Botsch, M., & Latoschik, M. E. (2021). The Embodiment of Photorealistic Avatars Influences Female Body Weight Perception in Virtual Reality https://doi.org/10.1109/VR50410.2021.00027
[76] Wu, S.-X. (2021). yi qing zhong duan 3 wan you yu xue sheng zi shang guan dao xin li shi ji han: yi zhi bei fa gui dang zai wai mian [Pandemic stop 30,000 students from receiving therapy; Counselors: always blocked by regulations]. The Storm Media. Retrieved October 22, 2022, from https://new7.storm.mg/article/3766083
[77] Wysa. (2017). Wysa - Everyday Mental Health Retrieved June 13, 2023 from https://www.wysa.com
[78] Xu, B., & Zhuang, Z. (2022). Survey on psychotherapy chatbots. Concurrency and Computation: Practice and Experience, 34(7), e6170. https://doi.org/10.1002/cpe.6170
[79] Youper. (2017). Youper: Artificial Intelligence For Mental Health Care Retrieved June 13, 2023 from https://www.youper.ai
[80] Zhang, J., Zhao, Y., Saleh, M., & Liu, P. (2020). Pegasus: Pre-training with extracted gap-sentences for abstractive summarization International Conference on Machine Learning, https://doi.org/10.48550/arXiv.1912.08777
[81] Zhang, Q., Karunanithi, M., & Kang, C. (2019). Immersive Augmented Reality (I Am Real) – Remote Clinical Consultation 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). https://doi.org/10.1109/BHI.2019.8834641
[82] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). BERTScore: Evaluating Text Generation with BERT. https://doi.org/10.48550/arxiv.1904.09675
[83] Zhang, Y., Baldridge, J., & He, L. (2019). PAWS: Paraphrase Adversaries from Word Scrambling. ArXiv, abs/1904.01130. https://doi.org/10.48550/arXiv.1904.01130
[84] Zhang, Y., Zheng, J., Jiang, Y., Huang, G., & Chen, R. (2019). A Text Sentiment Classification Modeling Method Based on Coordinated CNN-LSTM-Attention Model. Chinese Journal of Electronics, 28(1), 120-126. https://doi.org/10.1049/cje.2018.11.004
[85] Zhou, H., Huang, M., & Zhu, X. (2016). Context-aware Natural Language Generation for Spoken Dialogue Systems. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan.
電子全文 電子全文(網際網路公開日期:20260620)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top