|
1. Steyn, J.; Render, C., Hydrogen as energy carrier. OTC: Mpumalanga, South Africa, 2020, 1-13 2. Tee, S.Y.; Win, K.Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M.Y., Recent progress in energy-driven water splitting. Advance Science (Weinh), 2017, 4 (5), 1600337. 3. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews 2014, 43 (15), 5234-5244. 4. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Reports on Progress in Physics 2013, 76 (4), 046401. 5. Wang, W.; Tade, M. O.; Shao, Z., Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews 2015, 44 (15), 5371-5408. 6. Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A 2018, 6 (25), 11606-11630. 7. Wu, Z.; Wang, W.; Cao, Y.; He, J.; Luo, Q.; Bhutto, W. A.; Li, S.; Kang, J., A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire solar cell by pseudomorphic layers. Journal of Materials Chemistry A 2014, 2 (35), 14571-14576. 8. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of the ICPE 1974. 9. Kolahalam, L. A.; Kasi Viswanath, I. V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N., Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 2019, 18, 2182-2190. 10. Rani, A.; Reddy, R.; Sharma, U.; Mukherjee, P.; Mishra, P.; Kuila, A.; Sim, L. C.; Saravanan, P., A review on the progress of nanostructure materials for energy harnessing and environmental remediation. Journal of Nanostructure in Chemistry 2018, 8 (3), 255-291. 11. Bagheri, S.; Shameli, K.; Abd Hamid, S. B., Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry 2013, 2013, 1-5. 12. Wu, Y. C.; Liu, Z. M.; Chen, J. T.; Cai, X. J.; Na, P., Hydrothermal fabrication of hyacinth flower-like WS2 nanorods and their photocatalytic properties. Materials Letters 2017, 189, 282-285. 13. Daulbayev, C.; Sultanov, F.; Bakbolat, B.; Daulbayev, O., 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A Review. International Journal of Hydrogen Energy 2020, 45 (58), 33325-33342. 14. Massaglia, G.; Quaglio, M., Semiconducting nanofibers in photoelectrochemistry. Materials Science in Semiconductor Processing 2018, 73, 13-21. 15. Gan, X.; Lei, D.; Wong, K.-Y., Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy 2018, 10, 352-367. 16. Zhu, S.; Lei, J.; Zhang, L.; He, J., CoO/NF nanowires promote hydrogen and oxygen production for overall water splitting in alkaline media. International Journal of Hydrogen Energy 2020, 45 (15), 8031-8040. 17. Dolez, P. I., Nanomaterials definitions, classifications, and applications. Nanoengineering, 2015, 3-40. 18. Abid, N.; Khan, A. M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022, 300, 102597. 19. Byrappa, K.; Adschiri, T., Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials 2007, 53 (2), 117-166. 20. Bashir, A.; Awan, T. I.; Tehseen, A.; Tahir, M. B.; Ijaz, M., Interfaces and surfaces. Chemistry of Nanomaterials, 2020, 51-87. 21. Polman, A.; Atwater, H. A., Plasmonics: optics at the nanoscale. Materials Today 2005, 8 (1), 56. 22. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 2011, 111 (6), 3669-3712. 23. Hou, W.; Cronin, S. B., A review of surface plasmon resonance-enhanced photocatalysis. Advanced Functional Materials 2013, 23 (13), 1612-1619. 24. Murray, W. A.; Barnes, W. L., Plasmonic Materials. Advanced Materials 2007, 19 (22), 3771-3782. 25. Hong, Y.; Huh, Y. M.; Yoon, D. S.; Yang, J., Nanobiosensors based on localized surface plasmon resonance for biomarker detection. Journal of Nanomaterials 2012, 2012, 1-13. 26. Zhang, J.; Zhang, L.; Xu, W., Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics 2012, 45 (11), 113001. 27. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A., Searching for better plasmonic materials. Laser & Photonics Reviews 2010, 4 (6), 795-808. 28. Kumar, S.; Gradzielski, M.; Mehta, S. K., The critical role of surfactants towards CdS nanoparticles: synthesis, stability, optical and PL emission properties. RSC Advances 2013, 3 (8), 2662-2676. 29. Darwent, J. R.; Porter, G., Photochemical hydrogen production using cadmium sulphide suspensions in aerated water. Journal of the Chemical Society, Chemical Communications 1981, (4), 145-146. 30. Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy 2005, 36 (6-7), 485-496. 31. Jensen, T.; Van Duyne, R.; Johnson, S.; Maroni, V., Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Applied Spectroscopy 2000, 54 (3), 371-377. 32. Darby, B. L.; Auguié, B.; Meyer, M.; Pantoja, A. E.; Le Ru, E. C., Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nature Photonics 2015, 10 (1), 40-45. 33. Turley, H. K.; Hu, Z.; Silverstein, D. W.; Cooper, D. A.; Jensen, L.; Camden, J. P., Probing two-photon molecular properties with surface-enhanced hyper-Raman scattering: a combined experimental and theoretical study of crystal violet. The Journal of Physical Chemistry C 2016, 120 (37), 20936-20942. 34. Fabrizio, E. D.; Schlücker, S.; Wenger, J.; Regmi, R.; Rigneault, H.; Calafiore, G.; West, M.; Cabrini, S.; Fleischer, M.; van Hulst, N. F.; et al., Roadmap on biosensing and photonics with advanced nano-optical methods. Journal of Optics 2016, 18 (6), 063003. 35. Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O. M.; Iati, M. A., Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 2017, 29 (20), 203002. 36. Darwent, J. R., H2 Production photosensitized by aqueous semiconductor dispersions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1981, 77 (9), 1703-1709. 37. Yu, G.; Wang, X.; Cao, J.; Wu, S.; Yan, W.; Liu, G., Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution. Chem Commun (Camb) 2016, 52 (11), 2394-2397. 38. Chen, K.; Ma, L.; Wang, J. H.; Cheng, Z. Q.; Yang, D. J.; Li, Y. Y.; Ding, S. J.; Zhou, L.; Wang, Q. Q., Integrating metallic nanoparticles of Au and Pt with MoS2–CdS hybrids for high-efficient photocatalytic hydrogen generation via plasmon-induced electron and energy transfer. RSC Advances 2017, 7 (42), 26097-26103. 39. Li, S.; Zhao, Q.; Wang, D.; Xie, T., Work function engineering derived all-solid-state Z-scheme semiconductor-metal-semiconductor system towards high-efficiency photocatalytic H2 evolution. RSC Advances 2016, 6 (71), 66783-66787. 40. Campbell, P.; Green, M. A., Light trapping properties of pyramidally textured surfaces. Journal of Applied Physics 1987, 62 (1), 243-249. 41. Oh, I.; Kye, J.; Hwang, S., Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett 2012, 12 (1), 298-302. 42. Chen, H.; Wang, P.; Ye, H.; Yin, H.; Rao, L.; Luo, D.; Hou, X.; Zhou, G.; Nötzel, R., Vertically aligned InGaN nanowire arrays on pyramid textured Si (1 0 0): A 3D arrayed light trapping structure for photoelectrocatalytic water splitting. Chemical Engineering Journal 2021, 406, 126757. 43. Amirav, L.; Alivisatos, A. P., Photocatalytic hydrogen production with tunable nanorod heterostructures. The Journal of Physical Chemistry Letters 2010, 1 (7), 1051-1054. 44. Qiu, J.; Zhang, X. F.; Zhang, X.; Feng, Y.; Li, Y.; Yang, L.; Lu, H.; Yao, J., Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J Hazard Mater 2018, 349, 234-241. 45. Zubel, I.; Rola, K.; Kramkowska, M., The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions. Sensors and Actuators A: Physical 2011, 171 (2), 436-445. 46. Chu, A. K.; Wang, J. S.; Tsai, Z. Y.; Lee, C. K., A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers. Solar Energy Materials and Solar Cells 2009, 93 (8), 1276-1280. 47. Nakamura, K.; Aoki, M.; Sumita, I.; Sato, H.; Kumagai, Y.; Kawata, Y.; Ohshita, Y., Texturization control for fabrication of high efficiency mono crystalline si solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) 2013, 2239-2242. 48. Pang, C.; Gao, L.; Singh, A. V.; Chen, H.; Bowman, M. K.; Bao, N.; Shen, L.; Gupta, A., Synthesis, Formation Mechanism, and Magnetic Properties of Monodisperse Semiconducting Spinel CdCr2S4 Nanocrystals via a Facile “Seed-Mediated” Growth Method. Chemistry of Materials 2018, 30 (5), 1701-1709. 49. Makula, P.; Pacia, M.; Macyk, W., How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. The Journal of Physical Chemistry Letters 2018, 9 (23), 6814-6817. 50. Fang, J.; Zhou, C.; Chen, Y.; Fang, L.; Wang, W.; Zhu, C.; Ni, Y.; Lu, C., Efficient photocatalysis of composite films based on plasmon-enhanced triplet-triplet annihilation. ACS Applied Materials & Interfaces 2020, 12 (1), 717-726. 51. Liu, Y. T.; Lu, M. Y.; Perng, T. P.; Chen, L. J., Plasmonic enhancement of hydrogen production by water splitting with CdS nanowires protected by metallic TiN overlayers as highly efficient photocatalysts. Nano Energy 2021, 89, 106407.
|