跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張皓淳
研究生(外文):Chang, Hao-Chun.
論文名稱:塗覆在金字塔結構的不規則矽基板上Au/CdS光催化水分解產氫之研究
論文名稱(外文):Au/CdS Coated on Irregular Pyramidal Si Surface for Photocatalytic Hydrogen Production in Water Splitting
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Chen, Lih-Juann
口試委員:呂明諺吳文偉
口試委員(外文):Lu, Ming-YenWu, Wen-Wei
口試日期:2022-09-29
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:英文
論文頁數:72
中文關鍵詞:光催化水解產氫硫化鎘金字塔型矽基板電漿子表面電漿共振
外文關鍵詞:Photocatalytic water splittingHydrogen productionCdSPyramidal Si substratePlasmonLSPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由電漿子金屬和不同的半導體材料所組成的複合奈米結構因特殊的局部表面電漿共振效應在光催化的領域越來越受到重視。在主要的光催化材料中往往引入電漿子金屬產生電漿子強化光吸收以及電漿子敏化現象使光催化的效率有效提升。
本研究除了探討電漿子對光催化產氫的影響同時也改變基板表面結構。我們將水熱法合成的硫化鎘奈米顆粒分布在蝕刻過後表面有金字塔結構的矽基板上,最後使用電子束蒸鍍系統鍍上不同厚度的金形成Au/CdS/Si的三層結構來進行光催化水分解產氫的研究。結果顯示表面有金字塔結構的基板確實會因為表面積增加而在重量相同的光催化材料下形成較高的光催化效率。
在硫化鎘上鍍不同厚度(10、20、30奈米)的金作為電漿子材料後,結果顯示鍍了20奈米金膜且在金字塔結構的基版上的產氫效果最好。而厚度最厚的金膜對整體的光催化效果來說並不是最好,因為光催化材料被過厚的金遮住而無法有效吸收光,無法發揮硫化鎘的最佳光催化效果,但這反而提升了材料的耐用度,在耐用性測試的結果顯示此組數據在貯存光催化系統七天後的光催化效果下降得最少。
In recent years, the heterostructures composed of plasmonic metal and semiconductors have attracted attention due to the localized surface plasmonic resonance effect, which can enhance the catalytic effect owing to plasmonic sensitization and plasmon-enhanced light absorption
In the present work, the influences of both plasmonics and structures of the substrate on photocatalysis are addressed. The CdS nanoparticles were synthesized by a hydrothermal method and dispersed on the etched pyramidal surface of the Si substrate. Then Au/CdS/Si structures with different thicknesses of Au deposited by electron beam evaporation were investigated for hydrogen production from water splitting. The increase in surface area with pyramidal Si structure was found to lead to a higher efficiency of photocatalysis than the flat Si surfaces.
Additionally, among the samples with different thicknesses of Au layer (10, 20, and 30 nm) deposited on CdS, the one with a 20 nm Au layer lead to the best yield in hydrogen production instead of the one with the thickest Au layer. The result can be attributed to the decrease in light absorption. As the thickness of the Au layer increases, the layer will prevent light from reaching the semiconductors below the layer, resulting in lower photocatalytic efficiency. However, the photocatalytic ability of samples with the thickest Au layer was the most durable after storing for 7 days, indicating the best protection of the underlying CdS layer.
Abstract I
摘要 II
致謝 III
Contents IV
Chapter 1 Introduction 6
1.1 Research Background 6
1.1.1 Hydrogen Energy 6
1.1.2 Hydrogen Production Route 7
1.1.3 Hydrogen Production by Photocatalytic Water Splitting 10
1.2 Nanomaterials 13
1.2.1 Overview 13
1.2.2 Classification of Nanomaterials 14
1.2.3 Nanomaterials Synthesis Methods 16
1.3 Plasmons 18
1.3.1 Overview 18
1.3.2 Localized Surface Plasmon Resonance (LSPR) 19
1.3.3 Surface Plasmon Polariton (SPP) 21
1.3.4 Photocatalytic Plasmon Enhancement 22
1.3.5 Plasmonic Materials 24
1.4 Material Selection 26
1.4.1 Properties of CdS 26
1.4.2 Properties of Au 27
1.4.3 Properties of Au/CdS Composites 28
1.4.4 Pyramidal Si Substrate 30
1.5 Motivation 31
Chapter 2 Experimental Section 33
2.1 Experimental Procedures 33
2.1.1 Synthesis of CdS Nanoparticles 34
2.1.2 Preparation of Pyramidal Si Structure 35
2.1.3 Deposition of Au/CdS Nanocomposites 37
2.1.4 Hydrogen Production Efficiency Measurement 38
2.1.5 Material Analysis Methods 39
2.2 Experimental Characterizations 40
2.2.1 Scanning Electron Microscopy (SEM) 40
2.2.2 Energy-Dispersive X-ray Spectroscopy (EDS) 41
2.2.3 X-ray Diffraction (XRD) 42
2.2.4 Ultraviolet–Visible Spectroscopy (UV-Vis) 43
2.2.5 Transmission Electron Microscope (TEM) 44
2.2.6 Gas Chromatography (GC) 45
2.2.7 Focused Ion Beam (FIB) 46
2.2.8 Electron Beam Evaporation System (E-gun) 46
Chapter 3 Results and Discussion 47
3.1 Characteristics of CdS NPs 47
3.1.1 SEM Observation 47
3.1.2 XRD Analysis 48
3.1.3 TEM Observation and Analysis 50
3.1.4 UV-Vis Absorbance Spectrum 51
3.2 Morphology of Pyramidal Si Substrate 52
3.3 Characteristics of Au/CdS/Si Structure 53
3.4 H2 Production Measured by GC System 55
3.4.1 Effects of Different Structures of Substrate 55
3.4.2 Effect of LSPR with Different Thickness of Au 57
3.4.3 Combination of Substrate Structure and LSPR Effect 59
3.4.4 Durability Test 61
Chapter 4 Summary and Conclusions 62
Chapter 5 Future Prospects 63
5.1 Photocatalysis of Pyramidal Composite Films Based on Plasmon-Enhanced CdS NPs 63
5.2 Plasmonic Enhancement of H2 Production by Water Splitting with CdS Nanowires Protected by Metallic TiN Overlayers on the Pyramidal Si Substrate 65
Appendix 66
Calculation of the Surface Area of CdS NPs Coated Pyramidal Si Substrate 66
References 68
1. Steyn, J.; Render, C., Hydrogen as energy carrier. OTC: Mpumalanga, South Africa, 2020, 1-13
2. Tee, S.Y.; Win, K.Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M.Y., Recent progress in energy-driven water splitting. Advance Science (Weinh), 2017, 4 (5), 1600337.
3. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews 2014, 43 (15), 5234-5244.
4. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Reports on Progress in Physics 2013, 76 (4), 046401.
5. Wang, W.; Tade, M. O.; Shao, Z., Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews 2015, 44 (15), 5371-5408.
6. Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A 2018, 6 (25), 11606-11630.
7. Wu, Z.; Wang, W.; Cao, Y.; He, J.; Luo, Q.; Bhutto, W. A.; Li, S.; Kang, J., A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire solar cell by pseudomorphic layers. Journal of Materials Chemistry A 2014, 2 (35), 14571-14576.
8. Taniguchi, N., On the basic concept of nanotechnology. Proceeding of the ICPE 1974.
9. Kolahalam, L. A.; Kasi Viswanath, I. V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N., Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 2019, 18, 2182-2190.
10. Rani, A.; Reddy, R.; Sharma, U.; Mukherjee, P.; Mishra, P.; Kuila, A.; Sim, L. C.; Saravanan, P., A review on the progress of nanostructure materials for energy harnessing and environmental remediation. Journal of Nanostructure in Chemistry 2018, 8 (3), 255-291.
11. Bagheri, S.; Shameli, K.; Abd Hamid, S. B., Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry 2013, 2013, 1-5.
12. Wu, Y. C.; Liu, Z. M.; Chen, J. T.; Cai, X. J.; Na, P., Hydrothermal fabrication of hyacinth flower-like WS2 nanorods and their photocatalytic properties. Materials Letters 2017, 189, 282-285.
13. Daulbayev, C.; Sultanov, F.; Bakbolat, B.; Daulbayev, O., 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A Review. International Journal of Hydrogen Energy 2020, 45 (58), 33325-33342.
14. Massaglia, G.; Quaglio, M., Semiconducting nanofibers in photoelectrochemistry. Materials Science in Semiconductor Processing 2018, 73, 13-21.
15. Gan, X.; Lei, D.; Wong, K.-Y., Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy 2018, 10, 352-367.
16. Zhu, S.; Lei, J.; Zhang, L.; He, J., CoO/NF nanowires promote hydrogen and oxygen production for overall water splitting in alkaline media. International Journal of Hydrogen Energy 2020, 45 (15), 8031-8040.
17. Dolez, P. I., Nanomaterials definitions, classifications, and applications. Nanoengineering, 2015, 3-40.
18. Abid, N.; Khan, A. M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022, 300, 102597.
19. Byrappa, K.; Adschiri, T., Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials 2007, 53 (2), 117-166.
20. Bashir, A.; Awan, T. I.; Tehseen, A.; Tahir, M. B.; Ijaz, M., Interfaces and surfaces. Chemistry of Nanomaterials, 2020, 51-87.
21. Polman, A.; Atwater, H. A., Plasmonics: optics at the nanoscale. Materials Today 2005, 8 (1), 56.
22. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 2011, 111 (6), 3669-3712.
23. Hou, W.; Cronin, S. B., A review of surface plasmon resonance-enhanced photocatalysis. Advanced Functional Materials 2013, 23 (13), 1612-1619.
24. Murray, W. A.; Barnes, W. L., Plasmonic Materials. Advanced Materials 2007, 19 (22), 3771-3782.
25. Hong, Y.; Huh, Y. M.; Yoon, D. S.; Yang, J., Nanobiosensors based on localized surface plasmon resonance for biomarker detection. Journal of Nanomaterials 2012, 2012, 1-13.
26. Zhang, J.; Zhang, L.; Xu, W., Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics 2012, 45 (11), 113001.
27. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A., Searching for better plasmonic materials. Laser & Photonics Reviews 2010, 4 (6), 795-808.
28. Kumar, S.; Gradzielski, M.; Mehta, S. K., The critical role of surfactants towards CdS nanoparticles: synthesis, stability, optical and PL emission properties. RSC Advances 2013, 3 (8), 2662-2676.
29. Darwent, J. R.; Porter, G., Photochemical hydrogen production using cadmium sulphide suspensions in aerated water. Journal of the Chemical Society, Chemical Communications 1981, (4), 145-146.
30. Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy 2005, 36 (6-7), 485-496.
31. Jensen, T.; Van Duyne, R.; Johnson, S.; Maroni, V., Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Applied Spectroscopy 2000, 54 (3), 371-377.
32. Darby, B. L.; Auguié, B.; Meyer, M.; Pantoja, A. E.; Le Ru, E. C., Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nature Photonics 2015, 10 (1), 40-45.
33. Turley, H. K.; Hu, Z.; Silverstein, D. W.; Cooper, D. A.; Jensen, L.; Camden, J. P., Probing two-photon molecular properties with surface-enhanced hyper-Raman scattering: a combined experimental and theoretical study of crystal violet. The Journal of Physical Chemistry C 2016, 120 (37), 20936-20942.
34. Fabrizio, E. D.; Schlücker, S.; Wenger, J.; Regmi, R.; Rigneault, H.; Calafiore, G.; West, M.; Cabrini, S.; Fleischer, M.; van Hulst, N. F.; et al., Roadmap on biosensing and photonics with advanced nano-optical methods. Journal of Optics 2016, 18 (6), 063003.
35. Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O. M.; Iati, M. A., Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 2017, 29 (20), 203002.
36. Darwent, J. R., H2 Production photosensitized by aqueous semiconductor dispersions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1981, 77 (9), 1703-1709.
37. Yu, G.; Wang, X.; Cao, J.; Wu, S.; Yan, W.; Liu, G., Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution. Chem Commun (Camb) 2016, 52 (11), 2394-2397.
38. Chen, K.; Ma, L.; Wang, J. H.; Cheng, Z. Q.; Yang, D. J.; Li, Y. Y.; Ding, S. J.; Zhou, L.; Wang, Q. Q., Integrating metallic nanoparticles of Au and Pt with MoS2–CdS hybrids for high-efficient photocatalytic hydrogen generation via plasmon-induced electron and energy transfer. RSC Advances 2017, 7 (42), 26097-26103.
39. Li, S.; Zhao, Q.; Wang, D.; Xie, T., Work function engineering derived all-solid-state Z-scheme semiconductor-metal-semiconductor system towards high-efficiency photocatalytic H2 evolution. RSC Advances 2016, 6 (71), 66783-66787.
40. Campbell, P.; Green, M. A., Light trapping properties of pyramidally textured surfaces. Journal of Applied Physics 1987, 62 (1), 243-249.
41. Oh, I.; Kye, J.; Hwang, S., Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett 2012, 12 (1), 298-302.
42. Chen, H.; Wang, P.; Ye, H.; Yin, H.; Rao, L.; Luo, D.; Hou, X.; Zhou, G.; Nötzel, R., Vertically aligned InGaN nanowire arrays on pyramid textured Si (1 0 0): A 3D arrayed light trapping structure for photoelectrocatalytic water splitting. Chemical Engineering Journal 2021, 406, 126757.
43. Amirav, L.; Alivisatos, A. P., Photocatalytic hydrogen production with tunable nanorod heterostructures. The Journal of Physical Chemistry Letters 2010, 1 (7), 1051-1054.
44. Qiu, J.; Zhang, X. F.; Zhang, X.; Feng, Y.; Li, Y.; Yang, L.; Lu, H.; Yao, J., Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J Hazard Mater 2018, 349, 234-241.
45. Zubel, I.; Rola, K.; Kramkowska, M., The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions. Sensors and Actuators A: Physical 2011, 171 (2), 436-445.
46. Chu, A. K.; Wang, J. S.; Tsai, Z. Y.; Lee, C. K., A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers. Solar Energy Materials and Solar Cells 2009, 93 (8), 1276-1280.
47. Nakamura, K.; Aoki, M.; Sumita, I.; Sato, H.; Kumagai, Y.; Kawata, Y.; Ohshita, Y., Texturization control for fabrication of high efficiency mono crystalline si solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) 2013, 2239-2242.
48. Pang, C.; Gao, L.; Singh, A. V.; Chen, H.; Bowman, M. K.; Bao, N.; Shen, L.; Gupta, A., Synthesis, Formation Mechanism, and Magnetic Properties of Monodisperse Semiconducting Spinel CdCr2S4 Nanocrystals via a Facile “Seed-Mediated” Growth Method. Chemistry of Materials 2018, 30 (5), 1701-1709.
49. Makula, P.; Pacia, M.; Macyk, W., How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. The Journal of Physical Chemistry Letters 2018, 9 (23), 6814-6817.
50. Fang, J.; Zhou, C.; Chen, Y.; Fang, L.; Wang, W.; Zhu, C.; Ni, Y.; Lu, C., Efficient photocatalysis of composite films based on plasmon-enhanced triplet-triplet annihilation. ACS Applied Materials & Interfaces 2020, 12 (1), 717-726.
51. Liu, Y. T.; Lu, M. Y.; Perng, T. P.; Chen, L. J., Plasmonic enhancement of hydrogen production by water splitting with CdS nanowires protected by metallic TiN overlayers as highly efficient photocatalysts. Nano Energy 2021, 89, 106407.
電子全文 電子全文(網際網路公開日期:20271017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊