跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溥 言
研究生(外文):Pooyan Heravi
論文名稱:水平分層流現象的流體動力學與混合機制探討
論文名稱(外文):Mixing and Interface Dynamics in Horizontally Stratified Flows
指導教授:饒達仁
指導教授(外文):Yao, Da-Jeng.
口試委員:朱麗安鍾添淦黃正昇楊秉祥
口試日期:2023-04-26
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:99
中文關鍵詞:混合微流體
外文關鍵詞:MixingMicrofluidicsDiffusionTwo-phase Flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
兩道可混合液體的並排層流(也稱為水平分層流)是微流體中最常見的兩相流動狀態之一。 此流態在廣泛的應用中提供了獨特的幫助,但它也給這些系統帶來了新的複雜性,而這些系統還沒有被很好地理解。 正確理解這種流態的質傳(物質濃度不均勻而發生的質量轉移過程)和流體動力學是設計高效微流體裝置的先決條件。

在此,使用分析、數值和實驗方法對水平分層流態 (HSFR) 中的側向流動進行了深入研究。 首先,研究了改變模式的橫向流動的根本原因。根據觀察,HSFR 比以前假設的要復雜得多。發現了一系列相互關聯的參數,可以解釋觀察到的側向流動。這一系列參數源於擴散率、質量密度和重力的同時影響。研究結果表明,忽略現象鏈中任何一個環節的簡化將無法預測這些因素的綜合影響。

論文持續研究該參數鏈的動態及其對流動模式的影響。目標是量化各種幾何因素(如比例、高度和連接配置)以及操作參數(如速度、初始密度和濃度)對側向流動的影響,反之亦然。結果表明在佩克萊特數=1000的條件下,觀察到高達 15 度的旋轉,這遠高於該領域目前的常見做法。 顯示需要考慮這些因素才能準確預測界面處的擴散現象。

最後以實驗結果,我提出了一個經驗數學模型,由 Grashof 和 Reynolds 數組成。 依據作者所知,該模型能夠預測任何牛頓流體的界面旋轉角度和矩形通道中的任何點,以及該流態下的任何操作條件。

令人驚訝的是,儘管水平分層流態在微流體中很普遍,但人們對這種流動模式的傳質和流體動力學缺乏了解。深入了解這些現象,並確定緩解這些現象的方法,對於提高包含混溶液體界面的微流體裝置的性能至關重要。目前的調查將為未來的研究打開大門,以準確估計其微流體設備中的流體行為。
Side-by-side laminar flow (also known as horizontally stratified flows) of two-miscible liquids is one of the most common two-phase flow regimes in microfluidics. While this flow regime presents unique opportunities in a wide range of applications, it also introduces new complexity into these systems which is not well understood. Proper understanding of the mass transfer and hydrodynamics of this flow regime is a prerequisite to designing efficient microfluidic devices.

Herein, lateral flow in horizontally stratified flow regime (HSFR) is thoroughly studied using analytical, numerical and experimental methods. First, the underlying reason for pattern-altering lateral flow is investigated. It is observed that HSFR is much more complicated than previously assumed. A chain of interlinked parameters is found that can explain the observed lateral flow. This chain of parameters arises from the simultaneous effects of diffusivity, mass density and gravitational forces. The findings indicate that simplifications that ignore any one of the links in the phenomena chain will not be able to predict the combined effect of these factors.

The dissertation then proceeds to investigate the dynamics of this chain of parameters and the implications on the flow pattern. The goal is to quantify the effects of various geometrical factors such as scale, height, and junction configuration, as well as operational parameters such as velocity and initial density and concentration on the lateral flow and vice-versa. The results reveal that rotations as high as 15 degrees were observed at Péclet numbers of the order 1000, which is much higher than current common practice in the field. This suggests that these factors need to be considered in order to accurately predict the phenomena of diffusion at the interface.

Finally, based on experimental results, I propose an empirical mathematical model, composed of Grashof and Reynolds numbers. To the best of the author's knowledge, the model is capable of predicting the angle of rotation of the interface and any point in rectangular channels for any Newtonian fluids and any operating conditions in this flow regime.

It is surprising that despite its prevalence in microfluidics, there is a lack of understanding of the mass transfer and hydrodynamics of this flow pattern. Gaining insight into these phenomena, as well as identifying ways to mitigate it, is crucial for enhancing the performance of microfluidic devices that incorporate interfaces of miscible liquids. The current investigation will open the door for future studies to have an accurate estimation of the fluid behavior in their microfluidic devices.
Contents
Abstract (Chinese) I
Abstract II
Contents IV
List of Figures VII
List of Tables X
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Literature Review 6
2.1 Two-Phase Liquid-Liquid Flows in Microfluidics . . . . . . . . . . . 6
2.1.1 Annular Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Segmented Flow (Also Known as Plug/Slug Flow) . . . . . . 8
2.1.3 Dispersed Flow (Also Known as Droplets) . . . . . . . . . . 9
2.1.4 Stratified Flow (Also Known as Parallel Flow) . . . . . . . . 9
2.2 Examples of Difficulties in Two-Phase Devices . . . . . . . . . . . . 11
2.3 Interface Dynamics in Liquid-Liquid Microfluidics . . . . . . . . . . 14
IV
3 Materials and Methods 19
3.1 Hydrodynamics Principles . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Experimental Setup and Methods . . . . . . . . . . . . . . . . . . . 20
3.2.1 Microfluidic device fabrication . . . . . . . . . . . . . . . . . 20
3.2.2 Fluorescent Confocal Microscopy . . . . . . . . . . . . . . . 21
3.2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Materials and chemicals . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Experimental Procedure . . . . . . . . . . . . . . . . . . . . 26
3.2.6 Accepted Error Margins . . . . . . . . . . . . . . . . . . . . 29
3.2.7 Post-Processing of the Data . . . . . . . . . . . . . . . . . . 30
3.3 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Density, Viscosity and Diffusivity . . . . . . . . . . . . . . . 36
3.3.3 Implementation of the Model . . . . . . . . . . . . . . . . . 38
4 Results 41
4.1 Evidence of Lateral Flow in Equal Density Binary Systems . . . . . 41
4.1.1 Velocity and Evolution of the interface along the Channel . . 41
4.1.2 Effects of Initial Concentration/Density . . . . . . . . . . . . 43
4.1.3 Validation of the Numerical Model . . . . . . . . . . . . . . 45
4.1.4 Underlying Chain of Phenomena . . . . . . . . . . . . . . . 48
4.1.5 The Full Picture of Rotation Angle Profile . . . . . . . . . . 50
4.2 Empirical Model for Orientation of the Interface . . . . . . . . . . . 50
4.2.1 Empirical Model for the Angle of Rotation for Square Cross-
Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Application to Flows of Unequal Densities . . . . . . . . . . 54
4.2.3 Generalization of the Model to All Aspect Ratios . . . . . . 58
V
4.2.4 Using the Model to Maintain a Vertical Interface . . . . . . 59
4.3 Effects of Inlet Junction . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Microfluidic Device Inlet Junctions . . . . . . . . . . . . . . 60
4.3.2 Mesh and Geometry of Various Device Types . . . . . . . . 62
4.3.3 Validation for Various Geometries . . . . . . . . . . . . . . . 64
4.3.4 Effects of Geometry on Interface Rotation for Various Inlet
Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.5 Shape of Interface for Various Inlet Geometries . . . . . . . 67
4.3.6 Streamlines at Various Junctions . . . . . . . . . . . . . . . 69
4.3.7 Proposed Lateral Flow Resistant Junction . . . . . . . . . . 70
4.4 Mixing Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Increased Mixing Due to Transversal Flow . . . . . . . . . . 71
4.4.2 Interdiffusion zone . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Effect of Aspect Ratio of the Channel . . . . . . . . . . . . . 74
4.4.4 Effects of Initial Concentration . . . . . . . . . . . . . . . . 76
4.4.5 Effects of Velocity . . . . . . . . . . . . . . . . . . . . . . . . 78
5 Discussion and Conclusions 81
5.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.1 Generalization of the Model to Non-Newtonian Solutions . . 83
5.1.2 Using the Findings to Improve Microfluidics . . . . . . . . . 85
5.1.3 Study the Effects of Asymmetric Channel/inlet Shapes . . . 87
Bibliography 89
[1] Marwah Al-Azzawi, Farouq S Mjalli, Afzal Husain, and Muthanna Al-
Dahhan. A review on the hydrodynamics of the liquid–liquid two-phase flow
in the microchannels. Industrial & Engineering Chemistry Research, 2021.
[2] Javier Atencia and David J Beebe. Controlled microfluidic interfaces. Nature,
437(7059):648–655, 2005.
[3] Ana I Barbosa and Nuno M Reis. A critical insight into the development
pipeline of microfluidic immunoassay devices for the sensitive quantitation of
protein biomarkers at the point of care. Analyst, 142(6):858–882, 2017.
[4] Ahmad Bedram and Ali Moosavi. Droplet breakup in an asymmetric mi-
crofluidic t junction. The European Physical Journal E, 34:1–8, 2011.
[5] Koushik Guha Biswas, Rahul Patra, Gargi Das, Subhabrata Ray, and
Jayanta Kumar Basu. Effect of flow orientation on liquid–liquid slug flow
in a capillary tube. Chemical Engineering Journal, 262:436–446, 2015.
[6] A Borgogna, MA Murmura, MC Annesini, M Giona, and S Cerbelli. A hybrid
numerical approach for predicting mixing length and mixing time in microflu-
idic junctions from moderate to arbitrarily large values of the p ́eclet number.
Chemical Engineering Science, 196:247–264, 2019.
[7] Xueye Chen. Topology optimization of microfluidics—a review. Microchemical
Journal, 127:52–61, 2016.
[8] Yuchao Chen, Mengxi Wu, Liqiang Ren, Jiayang Liu, Pamela H Whitley, Lin
Wang, and Tony Jun Huang. High-throughput acoustic separation of platelets
from whole blood. Lab on a Chip, 16(18):3466–3472, 2016.
[9] Roger Darros-Barbosa, Murat O Balaban, and Arthur A Teixeira. Tempera-
ture and concentration dependence of density of model liquid foods. Interna-
tional Journal of Food Properties, 6(2):195–214, 2003.
[10] Dhiman Das, Dinh-Tuan Phan, Yugang Zhao, Yuejun Kang, Vincent Chan,
and Chun Yang. A multi-module microfluidic platform for continuous pre-
concentration of water-soluble ions and separation of oil droplets from oil-in-
water (o/w) emulsions using a dc-biased ac electrokinetic technique. Elec-
trophoresis, 38(5):645–652, 2017.
[11] Dino Di Carlo. Inertial microfluidics. Lab on a Chip, 9(21):3038–3046, 2009.
[12] Xiaoyun Ding, Zhangli Peng, Sz-Chin Steven Lin, Michela Geri, Sixing Li,
Peng Li, Yuchao Chen, Ming Dao, Subra Suresh, and Tony Jun Huang. Cell
separation using tilted-angle standing surface acoustic waves. Proceedings of
the National Academy of Sciences, 111(36):12992–12997, 2014.
[13] P Dow, K Kotz, S Gruszka, J Holder, and J Fiering. Acoustic separation in
plastic microfluidics for rapid detection of bacteria in blood using engineered
bacteriophage. Lab on a Chip, 18(6):923–932, 2018.
[14] John Fuseler, W Gray Jay Jerome, and Robert L Price. Types of confocal
instruments: Basic principles and advantages and disadvantages. In Basic
confocal microscopy, pages 187–213. Springer, 2018.
[15] Adem Gharsallaoui, Barbara Rog ́e, Jean G ́enotelle, and Mohamed Math-
louthi. Relationships between hydration number, water activity and density
of aqueous sugar solutions. Food Chemistry, 106(4):1443–1453, 2008.
90
[16] Jenifer G ́omez-Pastora, Cristina Gonz ́alez-Fern ́andez, Marcos Fallanza, Eu-
genio Bringas, and Inmaculada Ortiz. Flow patterns and mass transfer per-
formance of miscible liquid-liquid flows in various microchannels: Numerical
and experimental studies. Chemical Engineering Journal, 344:487–497, 2018.
[17] Cristina Gonz ́alez Fern ́andez, Jenifer G ́omez Pastora, Arantza Basauri, Mar-
cos Fallanza, Eugenio Bringas, Jeffrey J Chalmers, and Inmaculada Ortiz.
Continuous-flow separation of magnetic particles from biofluids: how does
the microdevice geometry determine the separation performance? Sensors,
20(11):3030, 2020.
[18] Sauli Halonen, Teija Kangas, Mauri Haataja, and Ulla Lassi. Urea-water-
solution properties: density, viscosity, and surface tension in an under-
saturated solution. Emission Control Science and Technology, 3(2):161–170,
2017.
[19] Bo Hoon Han, Sumi Kim, Geeyoon Seo, Youhee Heo, Seok Chung, and Ji Yoon
Kang. Isolation of extracellular vesicles from small volumes of plasma using
a microfluidic aqueous two-phase system. Lab on a Chip, 20(19):3552–3559,
2020.
[20] Majid Hejazian, Connie Darmanin, Eugeniu Balaur, and Brian Abbey. Mixing
and jetting analysis using continuous flow microfluidic sample delivery devices.
RSC Advances, 10(27):15694–15701, 2020.
[21] Pooyan Heravi, Li-An Chu, and Da-Jeng Yao. An empirical model for lateral
flow in horizontally stratified flows. Microfluidics and Nanofluidics, 27(1):4,
2023.
91
[22] Pooyan Heravi, Li-An Chu, and Da-Jeng Yao. Reorientation of the interface
between two miscible solutions of equal density. Experimental Thermal and
Fluid Science, page 110854, 2023.
[23] Pooyan Heravi and Farschad Torabi. A mathematical model for pressure drop
of two-phase dry-plug flow in circular mini/micro channels. International
Journal of Multiphase Flow, 87:9–15, 2016.
[24] David E Hertzog, Benjamin Ivorra, Bijan Mohammadi, Olgica Bakajin, and
Juan G Santiago. Optimization of a microfluidic mixer for studying protein
folding kinetics. Analytical chemistry, 78(13):4299–4306, 2006.
[25] Shakhawat Hossain and Kwang-Yong Kim. Optimization of a micromixer
with two-layer serpentine crossing channels at multiple reynolds numbers.
Chemical Engineering & Technology, 40(12):2212–2220, 2017.
[26] SHAO Huawei, L ̈U Yangcheng, WANG Kai, and LUO Guangsheng. An ex-
perimental study of liquid-liquid microflow pattern maps accompanied with
mass transfer. Chinese Journal of Chemical Engineering, 20(1):18–26, 2012.
[27] Rustem F Ismagilov, Abraham D Stroock, Paul JA Kenis, George Whitesides,
and Howard A Stone. Experimental and theoretical scaling laws for transverse
diffusive broadening in two-phase laminar flows in microchannels. Applied
Physics Letters, 76(17):2376–2378, 2000.
[28] Jovan Jovanovic, Evgeny V Rebrov, TA Nijhuis, MT Kreutzer, Volker Hessel,
and Jaap C Schouten. Liquid–liquid flow in a capillary microreactor: hydro-
dynamic flow patterns and extraction performance. Industrial & Engineering
Chemistry Research, 51(2):1015–1026, 2012.
92
[29] Jovan Jovanovi ́c, Wenya Zhou, Evgeny V Rebrov, TA Nijhuis, Volker Hessel,
and Jaap C Schouten. Liquid–liquid slug flow: hydrodynamics and pressure
drop. Chemical Engineering Science, 66(1):42–54, 2011.
[30] Andrew Evan Kamholz and Paul Yager. Theoretical analysis of molecular
diffusion in pressure-driven laminar flow in microfluidic channels. Biophysical
journal, 80(1):155–160, 2001.
[31] A Kawahara, PM-Y Chung, and M Kawaji. Investigation of two-phase flow
pattern, void fraction and pressure drop in a microchannel. International
journal of multiphase flow, 28(9):1411–1435, 2002.
[32] Petr Kuban, Jordan Berg, and Purnedu K Dasgupta. Vertically stratified
flows in microchannels. computational simulations and applications to solvent
extraction and ion exchange. Analytical chemistry, 75(14):3549–3556, 2003.
[33] Jung-Jae Lee, Kyung Jae Jeong, Michinao Hashimoto, Albert H Kwon, Alina
Rwei, Sahadev A Shankarappa, Jonathan H Tsui, and Daniel S Kohane. Syn-
thetic ligand-coated magnetic nanoparticles for microfluidic bacterial separa-
tion from blood. Nano letters, 14(1):1–5, 2014.
[34] Andreas Lenshof, Asilah Ahmad-Tajudin, Kerstin Jar ̊as, Ann-Margret Sward-
Nilsson, Lena ̊Aberg, Gyorgy Marko-Varga, Johan Malm, Hans Lilja, and
Thomas Laurell. Acoustic whole blood plasmapheresis chip for prostate spe-
cific antigen microarray diagnostics. Analytical chemistry, 81(15):6030–6037,
2009.
[35] Rui Lima, Shigeo Wada, Ken-ichi Tsubota, and Takami Yamaguchi. Confocal
micro-piv measurements of three-dimensional profiles of cell suspension flow
in a square microchannel. Measurement Science and Technology, 17(4):797,
2006.
93
[36] Ronghong Lin and Lawrence L Tavlarides. Flow patterns of n-hexadecane–co2
liquid–liquid two-phase flow in vertical pipes under high pressure. Interna-
tional journal of multiphase flow, 35(6):566–579, 2009.
[37] Yi Liu, Sijing Li, and Yaling Liu. Machine learning-driven multiobjective
optimization: An opportunity of microfluidic platforms applied in cancer re-
search. Cells, 11(5):905, 2022.
[38] Xinyu Lu and Xiangchun Xuan. Elasto-inertial pinched flow fractiona-
tion for continuous shape-based particle separation. Analytical chemistry,
87(22):11523–11530, 2015.
[39] Dmitriy M Makarov and Gennadiy I Egorov. Density and volumetric prop-
erties of the aqueous solutions of urea at temperatures from t=(278 to 333)
k and pressures up to 100 mpa. The Journal of Chemical Thermodynamics,
120:164–173, 2018.
[40] Minsky Marvin. Microscopy apparatus, December 19 1961. US Patent
3,013,467.
[41] Pascaline Mary, Vincent Studer, and Patrick Tabeling. Microfluidic droplet-
based liquid- liquid extraction. Analytical chemistry, 80(8):2680–2687, 2008.
[42] Marvin Minsky. Memoir on inventing the confocal scanning microscope. Scan-
ning, 10(4):128–138, 1988.
[43] Yoshihito Okubo, Taisuke Maki, Nobuaki Aoki, Teng Hong Khoo, Yoshikage
Ohmukai, and Kazuhiro Mae. Liquid–liquid extraction for efficient synthe-
sis and separation by utilizing micro spaces. Chemical Engineering Science,
63(16):4070–4077, 2008.
94
[44] John Oreopoulos, Richard Berman, and Mark Browne. Spinning-disk confocal
microscopy: present technology and future trends. Methods in cell biology,
123:153–175, 2014.
[45] Gianni Orsi, Mina Roudgar, Elisabetta Brunazzi, Chiara Galletti, and
Roberto Mauri. Water–ethanol mixing in t-shaped microdevices. Chemical
Engineering Science, 95:174–183, 2013.
[46] James Pawley. Handbook of biological confocal microscopy, volume 236.
Springer Science & Business Media, 2006.
[47] Filip Petersson, Andreas Nilsson, Cecilia Holm, Henrik J ̈onsson, and Thomas
Laurell. Continuous separation of lipid particles from erythrocytes by means
of laminar flow and acoustic standing wave forces. Lab on a Chip, 5(1):20–22,
2005.
[48] Balabhaskar Prabhakarpandian, Ming-Che Shen, Joseph B Nichols, Ivy R
Mills, Marta Sidoryk-Wegrzynowicz, Michael Aschner, and Kapil Pant. Sym-
bbb: a microfluidic blood brain barrier model. Lab on a Chip, 13(6):1093–
1101, 2013.
[49] Sudip Roy, Bhargab B Bhattacharya, and Krishnendu Chakrabarty. Opti-
mization of dilution and mixing of biochemical samples using digital microflu-
idic biochips. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 29(11):1696–1708, 2010.
[50] P Sajeesh and Ashis Kumar Sen. Particle separation and sorting in microflu-
idic devices: a review. Microfluidics and nanofluidics, 17(1):1–52, 2014.
[51] Marcelo Severino, Diego Martin Campana, and Maria Delia Giavedoni. Effects
of a surfactant on the motion of a confined gas-liquid interface. the influence
of the peclet number. 2005.
95
[52] Seyed Ali Mousavi Shaegh, Nam-Trung Nguyen, and Siew Hwa Chan. A
review on membraneless laminar flow-based fuel cells. International Journal
of Hydrogen Energy, 36(9):5675–5694, 2011.
[53] LS Sorell and AS Myerson. Diffusivity of urea in concentrated, saturated and
supersaturated solutions. AIChE journal, 28(5):772–779, 1982.
[54] Paul J Tadrous. Methods for imaging the structure and function of living
tissues and cells: 3. confocal microscopy and micro-radiology. The Journal of
pathology, 191(4):345–354, 2000.
[55] Wiroon Tanthapanichakoon, Kazuo Matsuyama, Nobuaki Aoki, and Kazuhiro
Mae. Design of microfluidic slug mixing based on the correlation between a di-
mensionless mixing rate and a modified peclet number. Chemical engineering
science, 61(22):7386–7392, 2006.
[56] Mark D Tarn, Maria J Lopez-Martinez, and Nicole Pamme. On-chip pro-
cessing of particles and cells via multilaminar flow streams. Analytical and
bioanalytical chemistry, 406(1):139–161, 2014.
[57] Vˆania Regina Nicoletti Telis, Javier Telis-Romero, HB Mazzotti, and
Ana L ́ucia Gabas. Viscosity of aqueous carbohydrate solutions at different
temperatures and concentrations. International Journal of food properties,
10(1):185–195, 2007.
[58] Dimitrios Tsaoulidis, Valentina Dore, Panagiota Angeli, Natalia V Plechkova,
and Kenneth R Seddon. Flow patterns and pressure drop of ionic liquid–water
two-phase flows in microchannels. International Journal of Multiphase Flow,
54:1–10, 2013.
96
[59] Fabrizio Vicari, Alessandro Galia, and Onofrio Scialdone. Development of a
membrane-less microfluidic thermally regenerative ammonia battery. Energy,
page 120221, 2021.
[60] Louis Vittoz, Guillaume Oger, Matthieu De Leffe, and David Le Touz ́e. Com-
parisons of weakly-compressible and truly incompressible approaches for vis-
cous flow into a high-order cartesian-grid finite volume framework. Journal
of Computational Physics: X, 1:100015, 2019.
[61] Junchao Wang, Naiyin Zhang, Jin Chen, Victor GJ Rodgers, Philip Brisk,
and William H Grover. Finding the optimal design of a passive microfluidic
mixer. Lab on a Chip, 19(21):3618–3627, 2019.
[62] Mengxi Wu, Yingshi Ouyang, Zeyu Wang, Rui Zhang, Po-Hsun Huang, Chuyi
Chen, Hui Li, Peng Li, David Quinn, Ming Dao, et al. Isolation of exosomes
from whole blood by integrating acoustics and microfluidics. Proceedings of
the National Academy of Sciences, 114(40):10584–10589, 2017.
[63] Zan Wu, Zhen Cao, and Bengt Sunden. Flow patterns and slug scaling of
liquid-liquid flow in square microchannels. International Journal of Multi-
phase Flow, 112:27–39, 2019.
[64] Cong Xu and Tingliang Xie. Review of microfluidic liquid–liquid extractors.
Industrial & Engineering Chemistry Research, 56(27):7593–7622, 2017.
[65] Jin Xuan, Michael KH Leung, Dennis YC Leung, and Huizhi Wang. Towards
orientation-independent performance of membraneless microfluidic fuel cell:
Understanding the gravity effects. Applied energy, 90(1):80–86, 2012.
[66] Masumi Yamada, Wataru Seko, Takuma Yanai, Kasumi Ninomiya, and Mi-
noru Seki. Slanted, asymmetric microfluidic lattices as size-selective sieves for
continuous particle/cell sorting. Lab on a Chip, 17(2):304–314, 2017.
97
[67] Yoshiko Yamaguchi, Takeshi Honda, Maria Portia Briones, Kenichi Ya-
mashita, Masaya Miyazaki, Hiroyuki Nakamura, and Hideaki Maeda. In-
fluence of gravity on two-layer laminar flow in a microchannel. Chemical
Engineering & Technology: Industrial Chemistry-Plant Equipment-Process
Engineering-Biotechnology, 30(3):379–382, 2007.
[68] Jing-Tang Yang, Ker-Jer Huang, and Yu-Chun Lin. Geometric effects on fluid
mixing in passive grooved micromixers. Lab on a Chip, 5(10):1140–1147, 2005.
[69] Junyi Yao, Yiyang Guan, Yunhwan Park, Yoon E Choi, Hyun Soo Kim, and
Jaewon Park. Optimization of ptfe coating on pdms surfaces for inhibition of
hydrophobic molecule absorption for increased optical detection sensitivity.
Sensors, 21(5):1754, 2021.
[70] Chia-Shun Yih. Instability due to viscosity stratification. Journal of Fluid
Mechanics, 27(2):337–352, 1967.
[71] Seong Kee Yoon, Michael Mitchell, Eric R Choban, and Paul JA Kenis.
Gravity-induced reorientation of the interface between two liquids of dif-
ferent densities flowing laminarly through a microchannel. Lab on a Chip,
5(11):1259–1263, 2005.
[72] Xunli Zhang, Jon M Cooper, Paul B Monaghan, and Stephen J Haswell.
Continuous flow separation of particles within an asymmetric microfluidic
device. Lab on a Chip, 6(4):561–566, 2006.
[73] Wujun Zhao, Taotao Zhu, Rui Cheng, Yufei Liu, Jian He, Hong Qiu, Lianchun
Wang, Tamas Nagy, Troy D Querec, Elizabeth R Unger, et al. Label-free and
continuous-flow ferrohydrodynamic separation of hela cells and blood cells in
biocompatible ferrofluids. Advanced functional materials, 26(22):3990–3998,
2016.
98
[74] Yuchao Zhao, Guangwen Chen, and Quan Yuan. Liquid-liquid two-phase flow
patterns in a rectangular microchannel. AIChE journal, 52(12):4052–4060,
2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊