跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瑋潔
研究生(外文):Chen, Wei-Chieh
論文名稱:雙色壓力螢光感測塗料開發及噴流實驗應用
論文名稱(外文):Two-Color Pressure-Sensitive Paint Development and Applicants on Jet Impingement Experiments
指導教授:黃智永
指導教授(外文):Huang, Chih-Yung
口試委員:鍾光民陳貴通
口試日期:2022-08-22
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:100
中文關鍵詞:壓力螢光感測塗料溫度螢光感測塗料噴流實驗
外文關鍵詞:Pressure-sensitive paintTemperature-sensitive paintJet impingement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
壓力螢光感測塗料(Pressure-sensitive paint)能夠進行非侵入方式進行量測,近年來被大量應用在模型表面壓力量測,然而,此塗料除了具有壓力感測的功能外,也會同時受到溫度變化的影響,因此,對壓力結果進行溫度修正是必要的。本研究以PtTFPP做為壓力敏感螢光分子,CsPbBr3量子點、有機化合物NBD相關衍生物及Thioflavin T (Th T)環境感測分子做為溫度敏感螢光分子,以混和壓感及溫感兩種螢光分子的方式,開發出適合應用於同步量測並提供溫度修正參數之雙色壓力螢光感測塗料。選用NBD-ZY37為溫度感測螢光分子時,在螢光衰減方面有良好的穩定性,且在溫度影響感測上溫度敏感度約-1.4 % / ℃。在壓力比0.5以上時,不受壓力變化影響,適用於雙色壓力感測塗料中。本研究將討論最合適之雙色壓力感測塗料,並將塗料應用於噴流研究中。噴流研究以15、20及30度做為衝擊角度,在壓力比為2.38、3.40及4.42條件下進行實驗。較大的衝擊角會使得壓力波提前發生,於壓力比2.38時,衝擊角由15度增加至30度,壓力波發生位置由s/D = 0.8提前至s/D = 0,且壓力波在壓力峰值區域越接近圓形;而較大的壓力比時,壓力波會向後延伸,於衝擊角為30度時,由2.4延伸至4.2,而最大壓力值由192 kPa 上升至260 kPa。
Pressure-sensitive paint (PSP) is a common pressure sensing technique. With its non-intruding feature, PSP has been applied to the surface pressure measurements on tested models. However, PSP has a temperature dependency that needs to be corrected. This study describes the development of a two-color PSP with an additional luminescence probe for providing the temperature-correction signal (T probe). The T probe factor can correct the temperature dependency embedded in the pressure profile. This paint uses PtTFPP as the pressure sensor and quantum dots, NBD derivates, and Th T have been used as T probes for developing appropriate two-color PSP. One of the NBD derivates, NBD-ZY37, performs with good stability in photodegradation and has -1.4 % / °C of temperature sensitivity. Moreover, it has close to none pressure effect while the pressure ratio is above 0.5 and it is suitable for two-color PSP selection. This paint has also been used in the jet impingement experiments. From the experimental results, the pressure wave occurs earlier while the impinge angle increases. When the pressure ratio is 2.38, the impinge angle from 15 degrees turns to 30 degrees, and the position of the pressure wave moves from s/D = 0.8 to 0. Meantime, the shape of the maximum pressure zone will change from a crescent shape to a round shape. On the other hand, when the pressure ratio increases, the pressure ratio extends. At 30 degrees impinge angle, the pressure ratio increases from 2.38 to 4.42, pressure ratio extends from 2.4 to 4.2. Meanwhile, maximum pressure raise from 192 kPa to 260 kPa.
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
第1章、 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.1.1 壓力螢光感測塗料 (Pressure-sensitive paint, PSP) 2
1.1.2 溫度螢光感測塗料 (Temperature-sensitive paint, TSP) 9
1.1.3 雙色壓力螢光感測塗料 (Two-color Pressure-sensitive paint, 2-color PSP) 16
1.1.4 螢光感測塗料在噴流實驗的應用 (PSP/TSP in jet impingement testing) 23
1.3 研究目的 27
第2章、 實驗原理 28
2.1 壓力/溫度螢光感測塗料之理論 28
2.1.1 光致發光(Photoluminescence) 28
2.1.2 氧氣淬滅(Oxygen Quenching) 29
2.1.3 熱淬滅(Thermal Quenching ) 30
2.2 壓力/溫度螢光感測塗料之量測原理 30
2.2.1 PSP量測原理 30
2.2.2 TSP量測原理 32
2.2.3 溫度影響修正原理 33
第3章、 實驗架設及方法 35
3.1 壓力/溫度螢光感測塗料選擇 35
3.1.1 螢光分子 35
3.1.2 黏著劑 37
3.1.3 溶劑 39
3.2 雙色壓力螢光感測塗料配製 40
3.3 實驗架設 42
第4章、 雙色壓力塗料測試結果與討論 48
4.1 塗料特徵量測與配方選用 48
4.1.1 CsPbBr3量子點 51
4.1.2 有機化合物NBD及其衍生物 52
4.1.3 Th T (Thioflavin T) 72
第5章、 噴流結果與討論 76
5.1 噴流實驗 76
5.1.1 單色PSP與TSP塗料驗證 76
5.1.2 雙色塗料驗證 80
5.1.3 雙色塗料噴流實驗 85
第6章、 結論與未來工作 92
6.1 結論 92
6.2 未來工作 94
參考文獻 95
[1] C.-Y. Huang, Y.-F. Lin, Y.-X. Huang, and K.-M. Chung, "Pressure-sensitive paint measurements with temperature correction on the wing of AGARD-B under transonic flow conditions," Measurement Science and Technology, vol. 32, no. 9, p. 094001, 2021.
[2] C.-Y. Huang, C.-Y. Yeh, Y.-F. Lin, and K.-M. Chung, "Global flow visualization of transonic cavity flow with various yaw angles," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, p. 0954410020984086, 2021.
[3] C.-Y. Chen, "The Application of Fast-responding Pressure Sensitive Paints on Transonic Convex Corner Flow Measurements with Vortex Generator," 2021.
[4] B. G. McLachlan and J. H. Bell, "Pressure-sensitive paint in aerodynamic testing," Experimental thermal and fluid science, vol. 10, no. 4, pp. 470-485, 1995.
[5] R. S. Yu, H. Yan, X. M. Wang, and Z. Y. Zha, "Preparation and Application of Oxygen Quenching Pressure Sensitive Paints," in Advanced Materials Research, 2011, vol. 189: Trans Tech Publ, pp. 585-588.
[6] T. Liu, J. P. Sullivan, K. Asai, C. Klein, and Y. Egami, Pressure and temperature sensitive paints. Springer, 2005.
[7] E. Puklin et al., "Ideality of pressure‐sensitive paint. I. Platinum tetra (pentafluorophenyl) porphine in fluoroacrylic polymer," Journal of Applied Polymer Science, vol. 77, no. 13, pp. 2795-2804, 2000.
[8] P. Di and L. Yingzheng, "A grid-pattern PSP/TSP system for simultaneous pressure and temperature measurements," Sensors and Actuators B: Chemical, vol. 222, pp. 141-150, 2016, doi: https://doi.org/10.1016/j.snb.2015.08.070.
[9] T. Bai and N. Gu, "Micro/nanoscale thermometry for cellular thermal sensing," Small, vol. 12, no. 34, pp. 4590-4610, 2016.
[10] A. M. Bass, "Fluorescence Studies of Some Simple Benzene Derivatives in the Near Ultraviolet: II. Toluene and Benzonitrile," The Journal of Chemical Physics, vol. 18, no. 10, pp. 1403-1410, 1950.
[11] A. M. Bass and H. Sponer, "Fluorescence Studies of Some Simple Benzene Derivatives in the Near Ultraviolet. I. Fluorobenzene and Chlorobenzene," JOSA, vol. 40, no. 6, pp. 389-396, 1950.
[12] M. L. Sastri and H. Sponer, "Fluorescence Studies of Some Simple Benzene Derivatives in the Near Ultraviolet. III. Benzotrifluoride," The Journal of Chemical Physics, vol. 20, no. 9, pp. 1428-1431, 1952.
[13] R. Adrian, M. Gharib, and W. Merzkirch, "Experimental Fluid Mechanics," 2005.
[14] C. Chapman, Y. Liu, G. Sonek, and B. Tromberg, "The use of exogenous fluorescent probes for temperature measurements in single living cells," Photochemistry and photobiology, vol. 62, no. 3, pp. 416-425, 1995.
[15] D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Analytical chemistry, vol. 73, no. 17, pp. 4117-4123, 2001.
[16] J. Feng et al., "A Triarylboron‐Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range," Angewandte Chemie, vol. 123, no. 35, pp. 8222-8226, 2011.
[17] G. A. Baker, S. N. Baker, and T. M. McCleskey, "Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid," Chemical communications, no. 23, pp. 2932-2933, 2003.
[18] S. T. Ulu and E. Kel, "Sensitive spectrofluorimetric method of analysis for gabapentin in pure and pharmaceutical preparations," Chinese Journal of Chemistry, vol. 29, no. 3, pp. 562-566, 2011.
[19] H. M. Abdel-Wadood, N. A. Mohamed, and A. M. Mahmoud, "Validated spectrofluorometric methods for determination of amlodipine besylate in tablets," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 70, no. 3, pp. 564-570, 2008.
[20] F. Ibrahim, N. El‐Enany, R. El‐Shaheny, and I. Mikhail, "Validated spectrofluorimetric and spectrophotometric methods for the determination of brimonidine tartrate in ophthalmic solutions via derivatization with NBD‐Cl. Application to stability study," Luminescence, vol. 30, no. 3, pp. 309-317, 2015.
[21] M. K. Kim and C. Kim, "Flip-Flop of Phospholipids in DMPC/POPC Mixed Vesicles," Journal of the Korean Chemical Society, vol. 64, no. 3, pp. 145-152, 2020.
[22] F. M. Salama, K. A. Attia, R. A. Said, A. El-Olemy, and A. M. Abdel-raoof, "Kinetic Spectrophotometric and Spectrofluorimetric Methods for the Analysis of Olanzapine Using4-chloro-7-nitrobenzofurazan," Analytical Chemistry Letters, vol. 7, no. 4, pp. 497-508, 2017.
[23] H. Raghuraman, S. Shrivastava, and A. Chattopadhyay, "Monitoring the looping up of acyl chain labeled NBD lipids in membranes as a function of membrane phase state," Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1768, no. 5, pp. 1258-1267, 2007.
[24] S. Fery-Forgues, J.-P. Fayet, and A. Lopez, "Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state?," Journal of Photochemistry and Photobiology A: Chemistry, vol. 70, no. 3, pp. 229-243, 1993.
[25] X.-d. Wang, O. S. Wolfbeis, and R. J. Meier, "Luminescent probes and sensors for temperature," Chemical Society Reviews, vol. 42, no. 19, pp. 7834-7869, 2013.
[26] K. Miyata et al., "Chameleon luminophore for sensing temperatures: control of metal‐to‐metal and energy back transfer in lanthanide coordination polymers," Angewandte Chemie International Edition, vol. 52, no. 25, pp. 6413-6416, 2013.
[27] T. Chuasaard, A. Ngamjarurojana, S. Surinwong, T. Konno, S. Bureekaew, and A. Rujiwatra, "Lanthanide coordination polymers of mixed phthalate/adipate for ratiometric temperature sensing in the upper-intermediate temperature range," Inorganic chemistry, vol. 57, no. 5, pp. 2620-2630, 2018.
[28] M. Kasai et al., "Characteristic Evaluation of Chameleon Luminophore Dispersed in Polymer," Sensors, vol. 20, no. 9, p. 2623, 2020.
[29] Y. Matsuda et al., "ZnS–AgInS2 nanoparticles as a temperature sensor," Sensors and Actuators B: Chemical, vol. 176, pp. 505-508, 2013.
[30] V. Danilov, A. Panfutova, A. Khrebtov, and T. Titova, "Specific features of resonant nonlinear absorption in colloidal solutions of CdSe/ZnS quantum dots," Optics and Spectroscopy, vol. 118, no. 1, pp. 94-98, 2015.
[31] L. M. Maestro et al., "CdSe quantum dots for two-photon fluorescence thermal imaging," Nano letters, vol. 10, no. 12, pp. 5109-5115, 2010.
[32] T. KAMEYA, Y. MATSUDA, Y. EGAMI, H. YAMAGUCHI, and T. NIIMI, "Combined pressure-/temperature-sensitive paint arranged in dot array," TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B, vol. 78, no. 791, pp. 1327-1335, 2012.
[33] B. Zelelow et al., "Dual luminophor pressure sensitive paint: II. Lifetime based measurement of pressure and temperature," Sensors and Actuators B: Chemical, vol. 96, no. 1-2, pp. 304-314, 2003.
[34] Y. Egami et al., "Development of fast response bi-luminophore pressure-sensitive paint by means of an inkjet printing technique," Measurement Science and Technology, vol. 26, no. 6, p. 064004, 2015.
[35] K. Lee et al., "Photophysical properties of tris (bipyridyl) ruthenium (II) thin films and devices," Physical Chemistry Chemical Physics, vol. 5, no. 12, pp. 2706-2709, 2003.
[36] Y. Iijima and H. Sakaue, "Platinum porphyrin and luminescent polymer for two-color pressure-and temperature-sensing probes," Sensors and Actuators A: Physical, vol. 184, pp. 128-133, 2012.
[37] S. Sano et al., "Temperature compensation of pressure-sensitive luminescent polymer sensors," Sensors and Actuators B: Chemical, vol. 255, pp. 1960-1966, 2018.
[38] T. Hayashi, S. Hase, and H. Sakaue, "Differential Pressure-Sensitive Paint Method," in AIAA Scitech 2020 Forum, 2020, p. 0291.
[39] D. Kurihara et al., "Surface Pressure Measurements over a Free Flight Object in a Ballistic Range Facility using Two-Color Pressure-Sensitive Paint," in AIAA Scitech 2020 Forum, 2020, p. 0123.
[40] H. Sakaue, Y. Iijima, Y. Yamada, T. Miyazaki, and M. Ishii, "Global Pressure and Temperature Measurements of Ballistic-Range Testing by PSP and TSP Techniques," in 52nd Aerospace Sciences Meeting, 2014, p. 1407.
[41] Y. Iijima and H. Sakaue, "Platinum porphyrin and luminescent polymer for two-color pressure- and temperature-sensing probes," Sensors and Actuators A: Physical, vol. 184, pp. 128-133, 2012, doi: 10.1016/j.sna.2012.06.033.
[42] D. Peng and Y. Liu, "Fast pressure-sensitive paint for understanding complex flows: from regular to harsh environments," Experiments in Fluids, vol. 61, no. 1, p. 8, 2019/11/23 2019, doi: 10.1007/s00348-019-2839-6.
[43] T. Kameya, Y. Matsuda, Y. Egami, H. Yamaguchi, and T. Niimi, "DEVELOPMENT OF A COMBINED PSP/TSP SENSOR USING QUANTUM DOT," 2012.
[44] D. Peng et al., "Temperature-Compensated Fast Pressure-Sensitive Paint," AIAA Journal, vol. 51, no. 10, pp. 2420-2431, 2013, doi: 10.2514/1.J052318.
[45] M. Bitter, F. Wartzek, S. Übelacker, H.-P. Schiffer, and C. Kähler, "Characterization of a Distorted Transonic Compressor Flow using Dual-Luminophore Pressure-Sensitive Paint," 06, 2015.
[46] S. Sachiko et al., "Temperature compensation of pressure-sensitive luminescent polymer sensors," Sensors and Actuators B: Chemical, vol. 255, pp. 1960-1966, 2018, doi: https://doi.org/10.1016/j.snb.2017.08.221.
[47] H. Abdeh and G. Barigozzi, "A parametric investigation of vane pressure side cutback film cooling by dual luminophor PSP," International Journal of Heat and Fluid Flow, vol. 69, pp. 106-116, 2018, doi: https://doi.org/10.1016/j.ijheatfluidflow.2017.12.006.
[48] K.-J. Moon, H. Mori, and M. Furukawa, "Simultaneous measurement method of pressure and temperature using dual-layer PSP/TSP with lifetime-based method," Measurement Science and Technology, vol. 29, 09 2018, doi: 10.1088/1361-6501/aae408.
[49] K.-J. Moon, H. Mori, Y. Ambe, and H. Kawabata, "Development of dual-layer PSP/TSP system for pressure and temperature measurements in low-speed flow field," in Fluids Engineering Division Summer Meeting, 2011, vol. 44403, pp. 2767-2772.
[50] Y. Matsuda et al., "Fine printing of pressure-and temperature-sensitive paints using commercial inkjet printer," Sensors and Actuators B: Chemical, vol. 250, pp. 563-568, 2017.
[51] T. Okabe, T. Miyazaki, and H. Sakaue, "Development of Temperature-Cancelled Motion-Capturing PSP System and Its Application to a Hypersonic Wind Tunnel," in 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference including the Aerospace T&E Days Forum, 2012, p. 2760.
[52] H. Sakaue, K. Miyamoto, and T. Miyazaki, "A motion-capturing pressure-sensitive paint method," Journal of Applied Physics, vol. 113, no. 8, p. 084901, 2013.
[53] T. Kameya, Y. Matsuda, Y. Egami, H. Yamaguchi, and T. Niimi, "Combined pressure and temperature sensor using pressure- and temperature-sensitive paints," 2012.
[54] I. Tani and Y. Komatsu, "Impingement of a round jet on a flat surface," in Applied mechanics: Springer, 1966, pp. 672-676.
[55] N. Zuckerman and N. Lior, "Jet impingement heat transfer: physics, correlations, and numerical modeling," Advances in heat transfer, vol. 39, pp. 565-631, 2006.
[56] Y. Nakai, N. Fujimatsu, and K. Fujii, "Flow classification of the under-expanded super sonic jet impinging on a flat plate," in 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003, p. 3467.
[57] J. Crafton, N. Lachendro, M. Guille, J. Sullivan, and J. Jordan, "Application of temperature and pressure sensitive paint to an obliquely impinging jet," in 37th Aerospace Sciences Meeting and Exhibit, 1999, p. 387.
[58] J. Crafton, C. Carter, J. Sullivan, and G. Elliott, "Pressure measurements on the impingement surface of sonic and sub-sonic jets impinging onto a flat plate at inclined angles," Experiments in fluids, vol. 40, no. 5, pp. 697-707, 2006.
[59] J. W. Crafton, S. Stanfield, S. Palluconi, T. Lui, and J. Montefort, "Heat flux measurements on the impingement surface of a jet operating at an inclined angle," in 55th AIAA Aerospace Sciences Meeting, 2017, p. 0480.
[60] M. Woodmansee and J. Dutton, "Treating temperature-sensitivity effects of pressure-sensitive paint measurements," Experiments in Fluids, vol. 24, no. 2, pp. 163-174, 1998.
[61] J. Gregory, A. Asai, M. Kamada, T. Liu, and J. Sullivan, "A review of pressure sensitive paints in hypersonic and unsteady flows," Journal of Aerospace Engineering, vol. 222, no. 2, pp. 249-290, 2008.
[62] C. Klein et al., "Pressure measurement on rotating propeller blades by means of the pressure-sensitive paint lifetime method," in New Results in Numerical and Experimental Fluid Mechanics IX: Springer, 2014, pp. 535-544.
[63] H. Sakaue, "Porous pressure sensitive paints for aerodynamic applications," MS Thesis, School of Material Science and Engineering, Purdue University, 1999.
[64] Y. Egami, S. Konishi, Y. Sato, and Y. Matsuda, "Effects of solvents for luminophore on dynamic and static characteristics of sprayable polymer/ceramic pressure-sensitive paint," Sensors and Actuators A: Physical, vol. 286, pp. 188-194, 2019.
[65] K. Okabe, R. Sakaguchi, B. Shi, and S. Kiyonaka, "Intracellular thermometry with fluorescent sensors for thermal biology," Pflügers Archiv-European Journal of Physiology, vol. 470, no. 5, pp. 717-731, 2018.
[66] M. Dharavath and D. Chakraborty, "Numerical simulation of supersonic jet impingement on inclined plate," Defence Science Journal, vol. 63, no. 4, pp. 355-362, 2013.
[67] K. McIlroy and K. Fujii, "Computational Analysis of Supersonic Underexpanded Jets Impinging on an Inclined Flat Plate," in 37th AIAA Fluid Dynamics Conference and Exhibit.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊