跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪愷揚
研究生(外文):Hung, Kai-Yang
論文名稱:探討評論訊息量對於線上電玩遊戲評論助益性的影響: 電玩開發者類別的調節作用
論文名稱(外文):Investigating the effect of review informativeness on online video games' review helpfulness: The moderating effect of types of game developers
指導教授:簡珮瑜
指導教授(外文):Chien, Pei-Yu
口試委員:王振源錢克瑄NGEN, FUNG HON
口試委員(外文):Wong, Chan-YuanChien, Ker-HsuanNGEN, FUNG HON
口試日期:2023-06-26
學位類別:碩士
校院名稱:國立清華大學
系所名稱:國際專業管理碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:82
中文關鍵詞:評論助益性遊戲產業屬性開發者
外文關鍵詞:Review helpfulnessGaming industryAttributesDevelopers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
The gaming industry has grown rapidly in recent years, with digital distribution platforms like Steam enabling gamers to access a vast library of games and share their experiences with others through user reviews. Thus, this leads to the study of the questions regarding what can be the factors affecting the review helpfulness and what’s different for gaming than other type of products. In this thesis, we use a sample regression analysis with the sample of 10,000 reviews randomly collected from each game. The analysis examines several key factors that may influence review helpfulness with both review and reviewer characteristics. Additionally, the moderator variable of game developer type is included to examine how the relationship between these factors and review helpfulness may be influenced. The findings of this study have suggested the attributes count does have significance to review helpfulness and the managerial implications for game developers and publishers that is particularly relevant for indie studios, who can capitalize on their strengths in innovative storytelling and creating unique experiences to appeal to niche audiences and foster a dedicated fan base. By understanding the specific aspects that drive review helpfulness, developers can maximize their impact and enhance player satisfaction.
Abstract-------------------------------------------------------2
1. Introduction------------------------------------------------7
2. Literature review-------------------------------------------14
3. Methodology-------------------------------------------------22
3.1. Collecting data-------------------------------------------22
3.2. Variable explanation & definition-------------------------23
3.2.1. Review helpfulness--------------------------------------23
3.3. Moderator effect (triple A title studio versus indie studio) ---------------------------------------------------------------24
3.4. Independent variables (review/reviewer characteristics)---27
3.4.1. Review valence------------------------------------------29
3.4.2. Review length-------------------------------------------30
3.4.3. Attributes count----------------------------------------33
3.4.4. In-game content attributes count------------------------35
3.4.5. Game & platform related attributes count----------------36
3.4.6. Positive experiential attributes count------------------36
3.4.7. Negative experiential attributes count------------------37
3.4.8. Game playtime-------------------------------------------38
3.4.9. Games owned---------------------------------------------39
3.4.10. Number of reviews commented----------------------------41
3.5. Hypothesis------------------------------------------------43
3.6. Measuring variables---------------------------------------50
3.6.1. Review helpfulness--------------------------------------50
3.6.2. Moderator (Studios/developers type)---------------------50
3.6.3. Review valence------------------------------------------51
3.6.4. Review length-------------------------------------------51
3.6.5. Attributes count & sub-categories-----------------------51
3.6.6. Playtime------------------------------------------------51
3.6.7. Games owned---------------------------------------------52
3.6.8. Number of reviews commented-----------------------------52
4. Result & interpretation-------------------------------------53
4.1. Regression analysis---------------------------------------53
4.1.1. Model 1: Result of main effect--------------------------53
4.1.2. Model 2: Result of moderating effect of studio/developer type
--------------------------------------------------------------59
5. Discussion--------------------------------------------------68
5.1. Attributes count------------------------------------------68
5.2. In-game content attributes count--------------------------68
5.3. Playtime--------------------------------------------------69
5.4. Number of reviews commented-------------------------------70
6. Conclusion--------------------------------------------------72
6.1. Academic implication--------------------------------------72
6.2. Managerial implication------------------------------------73
6.3. Limitation------------------------------------------------74
6.4. Conclusion------------------------------------------------77
Reference------------------------------------------------------79
1.Ahmad, S. N., & Laroche, M. (2015). How do expressed emotions affect the helpfulness of a product review? Evidence from reviews using latent semantic analysis. International Journal of Electronic Commerce, 20(1), 76-111.
2.Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers' objectives and review cues. International Journal of Electronic Commerce, 17(2), 99-126.
3.Bjering, E., Havro, L. J., & Moen, Ø. (2015). An empirical investigation of self-selection bias and factors influencing review helpfulness. International Journal of Business and Management, 10(7), 16.
4.Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521.
5.Chua, A. Y., & Banerjee, S. (2016). Helpfulness of user-generated reviews as a function of review sentiment, product type and information quality. Computers in Human Behavior, 54, 547-554.
6.Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313.
7.Girard, T., & Dion, P. (2010). Validating the search, experience, and credence product classification framework. Journal of Business Research, 63(9-10), 1079-1087.
8.Guzsvinecz, T. (2023). The correlation between positive reviews, playtime, design and game mechanics in souls-like role-playing video games. Multimedia Tools and Applications, 82(3), 4641-4670.
9.Hao, Y., Ye, Q., Li, Y., & Cheng, Z. (2010, January). How does the valence of online consumer reviews matter in consumer decision making? Differences between search goods and experience goods. In 2010 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE.
10.Huang, P., Lurie, N. H., & Mitra, S. (2009). Searching for experience on the web: An empirical examination of consumer behavior for search and experience goods. Journal of Marketing, 73(2), 55-69.
11.Jiménez, F. R., & Mendoza, N. A. (2013). Too popular to ignore: The influence of online reviews on purchase intentions of search and experience products. Journal of Interactive Marketing, 27(3), 226-235.
12.Kang, H. N., Yong, H. R., & Hwang, H. S. (2017). A Study of analyzing on online game reviews using a data mining approach: STEAM community data. International Journal of Innovation, Management and Technology, 8(2), 90.
13.Liu, Y., Huang, X., An, A., & Yu, X. (2008, December). Modeling and predicting the helpfulness of online reviews. In 2008 Eighth IEEE International Conference on Data Mining (pp. 443-452). IEEE.
14.Liu, Z., & Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140-151.
15.Lo, A. S., & Yao, S. S. (2019). What makes hotel online reviews credible? An investigation of the roles of reviewer expertise, review rating consistency and review valence. International Journal of Contemporary Hospitality Management, 31(1), 41-60.
16.Madu, C. N., & Madu, A. A. (2002). Dimensions of e‐quality. International Journal of Quality & Reliability Management, 19(3), 246-258.
17.Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon.com. Management Information Systems Quarterly, 185-200.
18.Pan, Y., & Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated product reviews. Journal of Retailing, 87(4), 598-612.
19.Qazi, A., Syed, K. B. S., Raj, R. G., Cambria, E., Tahir, M., & Alghazzawi, D. (2016). A concept-level approach to the analysis of online review helpfulness. Computers in Human Behavior, 58, 75-81.
20.Racherla, P., & Friske, W. (2012). Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories. Electronic Commerce Research and Applications, 11(6), 548-559.
21.Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40.
22.Vali, H., Xu, J. D., & Yildirim, M. B. (2021). Comparative reviews vs. regular consumer reviews: Effects of presentation format and review valence. Journal of Global Information Management (JGIM), 29(6), 1-29.
23.Zhu, L., Yin, G., & He, W. (2014). Is this opinion leader's review useful? Peripheral cues for online review helpfulness. Journal of Electronic Commerce Research, 15(4), 267.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top