跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/13 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴家鴻
研究生(外文):Tai, Chia-Hung
論文名稱:一個採用次階式概念之十位元每秒取樣兩億五千萬次混合型連續漸進式類比數位轉換器
論文名稱(外文):A 10-bit 250-MS/s Hybrid SAR ADC with Sub-ranging Concept
指導教授:朱大舜彭朋瑞
指導教授(外文):Chu, Ta-ShunPeng, Pen-Jui
口試委員:王毓駒吳仁銘
口試委員(外文):Wang, Yu-JiuWu, Jen-Ming
口試日期:2023-07-04
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:100
中文關鍵詞:連續漸進式類比數位轉換器訊號中和技術冗餘技術相關反向切換技術反切電容切換演算法
外文關鍵詞:SAR ADCNeutralization techniqueRedundancy techniqueCorrelated Reversed SwitchingSwitchback Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
無線通訊技術的快速發展大幅改善人類的生活模式,舉例來說,名聞遐邇的5G通訊技術提供更快的資料傳輸速度及更低的延遲,應用層面廣泛。以通訊信號傳輸來說,必不可少的正是類比數位轉換器,伴隨著半導體製程的演進,為了達成中高解析度及中速的目標,熱門的選擇無疑是連續漸進式類比數位轉換器。

一個採用次階式概念的高速混合型連續漸進式類比數位轉換器實現於此論文中,用近似次階式的電路架構為基礎,運用多個比較器,再加上錯誤容忍的技巧,使得速度可以有效的提升。其中,錯誤容忍的演算法是採用二進位重組的方式,它不只可以用來容忍電容陣列切換後,尚未穩定就進行下一次比較而產生的錯誤,還可以容忍不同比較器之間不匹配的錯誤。另外,此電路也採納回切已切換電容的方法,以補償電容不匹配問題。

本論文的成果是採用台積電65奈米CMOS標準製程,此連續漸進式類比數位轉換器在1.2伏特下操作,輸入訊號的峰對峰值為2.16伏特,是一個十位元每秒取樣兩億五千萬次的設計。當輸入訊號頻率接近奈奎斯特頻率時,模擬結果是: 平均功率消耗是2.867 mW,有效位元數是9.75位元。
The rapid development of wireless communication technology has greatly improved people's lifestyles. For example, the widely acclaimed 5G communication technology provides faster data transmission speed and lower latency in broad applications. Among them, the analog-to-digital converter (ADC) is an essential circuit in communication systems. With the evolution of semiconductor processes, the successive approximation register (SAR) ADC has been a prevalent option for medium-speed and medium-to-high-resolution applications.

The presented high-speed SAR ADC utilizes multiple comparators in a structure similar to a sub-ranging architecture and error-tolerant technique to effectively improve the speed. Among them, the error-tolerant technique uses the binary-scaled recombination search algorithm, which can not only tolerate the incomplete settling errors but also the offset errors between different comparators. Additionally, this circuit also employs the correlated reversed switching (CRS) technique to compensate for capacitor mismatch.

This work, a 10-bit 250-MS/s hybrid SAR ADC, is implemented in a TSMC 65-nm CMOS technology, with an operating voltage of 1.2 V and an input signal with peak-to-peak voltage (Vp-p) of 2.16 V. Near the Nyquist frequency, the simulation results present that the simulated ENOB is 9.75 bits with the average power consumption of 2.867 mW.
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures x
List of Tables xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 2
Chapter 2 Fundamentals of ADCs 3
2.1 Introduction of ADCs 3
2.1.1 Nyquist Sampling and Oversampling 3
2.1.2 Quantization Error 6
2.1.3 Resolution 8
2.2 Performance Indexes of ADCs 8
2.2.1 Static Specifications 9
2.2.1.a Offset Error 9
2.2.1.b Gain Error 10
2.2.1.c Differential Nonlinearity (DNL) 11
2.2.1.d Integral Nonlinearity (INL) 12
2.2.2 Dynamic Specifications 13
2.2.2.a Signal-to-Noise Ratio (SNR) 13
2.2.2.b Signal-to-Noise and Distortion Ratio (SNDR) 14
2.2.2.c Effective Number of Bits (ENOB) 14
2.2.2.d Spurious-Free Dynamic Range (SFDR) 15
2.2.2.e Total Harmonic Distortion (THD) 15
2.2.2.f Effective Resolution Bandwidth (ERBW) 16
2.2.2.g Figure of Merit (FoM) 16
2.3 Nyquist-Rate ADCs 17
2.3.1 Flash ADC 17
2.3.2 Sub-ranging ADC 19
Chapter 3 SAR ADCs 20
3.1 Operation of SAR ADCs 20
3.2 Fundamental Techniques and principles of SAR ADCs 21
3.2.1 Synchronous and Asynchronous 21
3.2.2 Bottom-Plate Sampling and Top-Plate Sampling 25
3.2.3 Charge-Redistribution 26
3.3 Capacitive-DAC (C-DAC) Switching Algorithm 28
3.3.1 Conventional Switching Algorithm 29
3.3.2 Split-Capacitor Switching Algorithm 31
3.3.3 Monotonic Switching Algorithm 33
3.3.4 Switchback Switching Algorithm 35
3.3.5 Comparison of Switching Energy 37
Chapter 4 High-Speed SAR ADCs 38
4.1 Timing Limit 38
4.1.1 The Comparison Time of Comparator 39
4.1.2 The Reset Time of Comparator 41
4.1.3 The Settling Time of DACs 42
4.1.4 The Logic Delay Time of Digital Circuits 43
4.2 Sub-ranging Architecture 45
4.3 Multi-Comparator Architecture 47
4.4 Error-Tolerant Design 49
4.4.1 Redundancy Search Algorithm 49
4.4.1.a Non-Binary Search Algorithm 50
4.4.1.b Binary-Scaled Compensation Search Algorithm 52
4.4.1.c Binary-Scaled Recombination Search Algorithm 55
Chapter 5 A 10-Bit 250-MS/s Hybrid SAR ADC 58
5.1 Architecture 58
5.2 Bootstrapped Switch (S/H) 60
5.2.1 Design Considerations 60
5.2.2 Operation 62
5.3 Dynamic Comparator 64
5.3.1 Design Considerations 64
5.3.1.a Offset 64
5.3.1.b Speed & Accuracy 65
5.3.1.c Kickback Noise 67
5.3.2 Coarse Comparator 67
5.3.2.a Operation 68
5.3.2.b Simulation Results 70
5.3.3 Fine Comparator 70
5.3.3.a Operation 72
5.3.3.b Simulation Results 73
5.4 Capacitive-DAC (C-DAC) 75
5.4.1 Switchback Switching Method 75
5.4.2 Redundancy Technique 75
5.4.3 Correlated Reversed Switching (CRS) Technique 77
5.4.3.a Behavior Model Simulation Results 80
5.4.4 Layout 80
5.5 Digital Circuits 82
5.5.1 Asynchronous Digital Control Logic Circuits 85
5.5.2 Differential Digital Latches 86
5.5.3 CRS Logic in the C-DAC Buffer 88
5.5.4 Additional Digital Error Correction (ADEC) Decoder 88
5.6 Simulation Results 90
5.6.1 Layout 90
5.6.2 Post-Layout Simulation 92
Chapter 6 Conclusions and Future Works 95
Reference 96
[1] Y. Chiu, B. Nikolic and P. R. Gray, "Scaling of analog-to-digital converters into ultra-deep-submicron CMOS," Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005., San Jose, CA, USA, 2005, pp. 375-382.
[2] P. Harpe, "Successive Approximation Analog-to-Digital Converters: Improving Power Efficiency and Conversion Speed," in IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 64-73, Fall 2016.
[3] J. Liu, Z. Luo and X. Xiong, "Low-Resolution ADCs for Wireless Communication: A Comprehensive Survey," in IEEE Access, vol. 7, pp. 91291-91324, 2019.
[4] Z. Tan, C. -H. Chen, Y. Chae and G. C. Temes, "Incremental Delta-Sigma ADCs: A Tutorial Review," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4161-4173, Dec. 2020.
[5] M. F. Wagdy, "Effect of ADC quantization errors on some periodic signal measurements," in IEEE Transactions on Instrumentation and Measurement, vol. IM-36, no. 4, pp. 983-989, Dec. 1987.
[6] R. H. Walden, "Analog-to-digital converter survey and analysis," in IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539-550, April 1999.
[7] B. Razavi, "The Flash ADC [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 9, no. 3, pp. 9-13, Summer 2017.
[8] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[9] S. -W. M. Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
[10] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, "A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s," in IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[11] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, "10-bit 30-MS/s SAR ADC Using a Switchback Switching Method," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013.
[12] B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, Spring 2015.
[13] H. -Y. Tai, Y. -S. Hu, H. -W. Chen and H. -S. Chen, "11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 196-197.
[14] L. Kull et al., "A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 2013, pp. 468-469.
[15] Tao Jiang, Wing Liu, F. Y. Zhong, Charlie Zhong and P. Y. Chiang, "Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40nm-CMOS," IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-4.
[16] W. Liu, P. Huang and Y. Chiu, "A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010, pp. 380-381.
[17] W. Liu, P. Huang and Y. Chiu, "A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration," Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, USA, 2012, pp. 1-4.
[18] A. H. Chang, H. -S. Lee and D. Boning, "A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration," 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, Romania, 2013, pp. 109-112.
[19] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, Hao San and Nobukazu Takai, "SAR ADC algorithm with redundancy," APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, China, 2008, pp. 268-271.
[20] C. -C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010, pp. 386-387.
[21] C. -C. Liu, C. -H. Kuo and Y. -Z. Lin, "A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
[22] C. -H. Hou, S. -J. Chang, H. -S. Wu, H. -J. Hu and E. -Z. Cun, "An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator," 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2017, pp. 1-4.
[23] B. Razavi, "The Bootstrapped Switch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12-15, Summer 2015.
[24] B. Razavi, "The Design of a Bootstrapped Sampling Circuit [The Analog Mind]," in IEEE Solid-State Circuits Magazine, vol. 13, no. 1, pp. 7-12, Winter 2021.
[25] G. Huang and P. Lin, "A fast bootstrapped switch for high-speed high-resolution A/D converter," 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur, Malaysia, 2010, pp. 382-385.
[26] S. -H. Wan et al., "A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of reference voltage buffers," 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 2013, pp. 293-296.
[27] L. Sumanen, M. Waltari and K. A. I. Halonen, "A 10-bit 200-MS/s CMOS parallel pipeline A/D converter," in IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1048-1055, July 2001.
[28] S. Jiang, M. A. Do, K. S. Yeo and W. M. Lim, "An 8-bit 200-MSample/s Pipelined ADC With Mixed-Mode Front-End S/H Circuit," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1430-1440, July 2008.
[29] P. Harpe, Y. Zhang, G. Dolmans, K. Philips and H. De Groot, "A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2012, pp. 472-474.
[30] B. Razavi, "The Design of a Comparator [The Analog Mind]," in IEEE Solid-State Circuits Magazine, vol. 12, no. 4, pp. 8-14, Fall 2020.
[31] P. Nuzzo, F. De Bernardinis, P. Terreni and G. Van der Plas, "Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1441-1454, July 2008.
[32] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[33] F. van der Goes et al., "11.4 A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 200-201.
[34] J. -H. Tsai et al., "A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1382-1398, June 2015.
[35] E. -Z. Cun, S. -J. Chang , "A 10-bit 300-MS/s Successive-Approximation Analog-to-Digital Converter with a Pre-amplifier-only Comparator," in National Cheng Kung University Master's Thesis (Department of Electrical Engineering), January 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 一個十位元每秒二億次取樣帶冗餘容錯連續漸進式類比數位轉換器
2. 一個十一位元每秒一億五千萬次取樣次階連續漸進式類比數位轉換器
3. 一個十二位元每秒一億次取樣的連續漸進式類比數位轉換器使用數位錯誤校正系統與回切電容架構
4. 應用於有線通訊13.6Gb/s全速率全數位式時脈與資料回復電路
5. 具有三階前饋式等化器及時脈校正之三階振幅脈衝之45-Gb/s電壓模式傳送機於四十奈米CMOS製程
6. 操作在16Gb/s的類比式時脈資料回復電路與1:8解串器
7. 應用於高速序列傳輸系統之操作在20-GHz的高解析度數位式鎖相迴路
8. 一個使用冗餘碼且具備每秒五百萬次取樣速度與十一位元解析度的循序漸進式類比數位轉換器設計
9. 具有五階前饋式等化器之四階振幅脈衝八位元數位類比轉換器之112-Gb/s傳送機於四十奈米CMOS製程
10. 64 Gb/s多階脈衝振幅調變低功耗電壓模態傳送機與4標記前饋式等化器於四十奈米CMOS製程
11. 於90 nm CMOS製程中實現應用於影像感測器之12位元過取樣連續漸進式類比數位轉換器
12. 一個每秒8000萬次取樣12位元帶冗餘位連續漸進式類比數位轉換器
13. 具有5標記前饋式等化器之80 Gb/s不歸零傳送機於四十奈米CMOS製程
14. 一個每秒傳送二百八十億位元之光接收機和一百四十億赫茲低相位雜訊鎖相迴路於四十奈米CMOS製程
15. 超高速四階脈衝振幅調變電壓模態傳送機以及一個超低相位雜訊分數型次採樣鎖相迴路於四十奈米CMOS製程