跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅予鴻
研究生(外文):Lo, Yu-Hung
論文名稱:具聯網及插入式輔助充電功能之蓄電池/超電容電動機車永磁同步馬達驅動系統
論文名稱(外文):BATTERY/SUPERCAPACITOR POWERED E-SCOOTER PMSM DRIVE WITH GRID-CONNECTED AND PLUG-IN AUXILIARY CHARGING FUNCTIONS
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Liaw, Chang-Ming
口試委員:陳盛基陳偉倫
口試委員(外文):Chen, Seng-ChiChen, Woei-Luen
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:137
中文關鍵詞:電動車電動機車表面貼磁式永磁同步馬達速度控制轉矩控制蓄電池超電容CLLC諧振轉換器切換式整流器變頻器電網至車輛能源收集
外文關鍵詞:EVE-scooterSPMSMspeed controltorque controlbatterySCCLLC resonant converterSMRinverterG2Venergy harvesting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在開發一具聯網及插入式電池補充功能之蓄電池/超電容供電電動機車表面貼磁式永磁同步馬達驅動系統。在行進模式,馬達驅動系統之直流鏈電壓由具各自介面轉換器之蓄電池及超電容所建立。在插入模式下,可進行電網至車輛之充電操作,且所開發之插入式能源收集裝置可納收可能之電源對車載電池進行輔助充電。
首先建構固定直流鏈電壓碳化矽變頻器供電之表面貼磁式永磁同步馬達驅動系統。先構配必要之轉子位置與電樞電流感測機構,以行馬達之向量控制。內控制迴路採用電流控制空間向量脈寬調制切換架構,而外迴路則採用速度和轉矩控制,進行操作特性比較評估。此外,直流鏈上配設一動態剎車臂,以避免直流鏈過壓。
接著開發具可變直流鏈電壓之蓄電池/超電容混合供電馬達驅動系統,可升壓及變壓之直流鏈能提升馬達在廣速度範圍之驅動性能及效率。此外,功率型儲能裝置超電容可協助電池之快充/快放操作。藉由所提之功率管理策略,獲得良好之蓄電池與超電容之暫態電流分配特性。
於閒置插入模式,所開發之電動車驅動系統實行聯網隔離充電操作。電力電路包含馬達驅動系統既有元件建構之單相升壓切換式整流器、隔離半橋CLLC諧振轉換器以及蓄電池介面轉換器。實際結果顯示,具有良好的充電性能以及入電品質。於插入模式下,為有效利用可收集之電源,車載電池亦可經所提能源收集裝置進行輔助充電。以維也納切換式整流器作為基礎電路架構,由妥善之電路與控制架構安排,可納收之可能電源含:三相交流電源/單相交流電源及直流電源。
This thesis develops a battery/supercapacitor (SC) powered electric scooter (E-scooter) surface-mounted permanent-magnet synchronous motor (SPMSM) drive with grid- connected and plug-in auxiliary charging functions. In driving mode, the motor drive DC-link is established by battery and SC with individual interface converter. In plug-in mode, the grid-to-vehicle (G2V) isolated charging operation can be made. And a plug-in energy harvester (PEH) is developed to accept possible various sources to auxiliarily charging the on-board battery.
First, the fixed DC-link voltage SiC-based inverter fed SPMSM drive is established as the basic platform. The necessary rotor position and armature current sensing schemes are designed for realizing vector control. In inner control loop, the current controlled space-vector pulse-width modulation (SVPWM) switching scheme is adopted. As to the outer control loop, both speed and torque controls are made and comparatively evaluated. The detailed designs of all constituted controllers are presented. Moreover, a dynamic braking leg is equipped to prevent the DC-link over-voltage.
Next, the battery/SC hybrid source powered motor drive with varied DC-link voltage is developed. The boosted and variable DC-link voltage is established to improve the motor driving performance and energy conversion efficiency over wide speed range. The power type storage device SC can assist the battery in quick discharging/charging operations. With the proposed power management strategy, the transient currents of the battery and the SC can be properly distributed.
In idle plug-in mode, the isolated grid-to-vehicle (G2V) charging operation is achieved using the embedded motor drive components. The power circuit includes a single-phase boost switch-mode rectifier (SMR) formed by armature winding as energy storage inductor, an isolated half-bridge CLLC (HBCLLC) resonant converter and the battery interface converter in buck mode. Good charging performance and power quality in line input utility grid are obtained. In plug-in mode, the on-board battery auxiliary charging can also be made via the proposed PEH to effectively utilize the accessible sources. The Vienna SMR schematic is employed to construct the developed PEH. Through proper circuit and control scheme arrangements, the possible input sources include three-phase AC, single-phase AC and DC sources.
ABSTRACT (i)
ACKNOWLEDGEMENTS (ii)
LIST OF CONTENTS (iii)
LIST OF FIGURES (vii)
LIST OF TABLES (xvi)
LIST OF SYMBOLS (xvii)
LIST OF ABBREVIATIONS (xxvii)

CHAPTER 1 INTRODUCTION (1)
1.1 Motivation (1)
1.2 Literature Survey (1)
1.3 Contributions of this Thesis (3)
1.4 Organizations of this Thesis (4)

CHAPTER 2 OVERVIEW OF SOME TECHNOLOGIES RELATED TO ELECTRIC VEHICLES AND PERMANET-MAGNET SYNCHRONOUS MOTORS (6)
2.1 Introduction (6)
2.2 Overview of Electric Vehicles (6)
2.2.1 Classifications (6)
2.2.2 Power Control Units (8)
2.3 Energy Storage Devices (9)
2.3.1 Battery (10)
2.3.2 Supercapacitor (11)
2.3.3 Possible Interconnected Schematics of Battery and SC (11)
2.4 Introduction of Grid-connected Operation of EV (12)
2.5 Interface Converters (14)
2.5.1 DC-DC Converters (14)
2.5.2 AC-DC Converters (16)
2.5.3 SPWM Inverters (18)
2.6 Introduction of PMSM Drive (20)
2.6.1 Some Key Issues of an EV PMSM Drive (20)
2.6.2 Motor Structures (20)
2.6.3 Physical Modeling (21)
2.6.4 Estimation of Equivalent Circuit Model Parameters (24)
2.7 Digital Control System (26)
2.7.1 Sample Interval Selection (26)
2.7.2 Design of Control Algorithm (26)

CHAPTER 3 E-SCOOTER SPMSM DRIVE WITH FIXED DC-LINK VOLTAGE (29)
3.1 Introduction (29)
3.2 System Configuration (29)
3.3 Power Circuit (29)
3.4 DSP-based Digital Control Environment (31)
3.4.1 Sensing and Interfacing Circuits (31)
3.4.2 The Employed DSP (33)
3.4.3 Control Flowcharts (33)
3.5 Control Schemes (35)
3.6 Performance Evaluation Under Speed Mode (40)
3.6.1 Speed Dynamic Responses (41)
3.6.2 Acceleration/Deceleration Characteristics (41)
3.6.3 State-steady Characteristics (42)
3.6.4 Reversible Operation (43)
3.6.5 Programmed Speed Pattern Evaluation (43)
3.7 Energy Conversion Efficiency Assessment (45)
3.8 Performance Evaluation Under Torque Mode (51)
3.8.1 Torque Command Tracking (51)
3.8.2 Reversible Operation Under Torque Mode (51)

CHAPTER 4 BATTERY/SC POWERED E-SCOOTER PMSM DRIVE (53)
4.1 Introduction (53)
4.2 System Configuration and Functional Description (53)
4.2.1 System Configuration (53)
4.2.2 Functional Description (53)
4.3 Battery Interface DC-DC Converter (55)
4.3.1 Power Circuit (56)
4.3.2 Control Schemes (57)
4.3.3 Discharging Performance Evaluation (65)
4.3.4 Efficiency Measurement (66)
4.4 Performance Evaluation of the Established E-scooter SPMSM Drive (67)
4.4.1 Battery Only with Fixed DC-link Voltage (67)
4.4.2 Battery Only with Varied DC-link Voltage (72)
4.5 SC Interface DC-DC Converter (75)
4.5.1 Estimated Equivalent Circuit Parameter of SC (76)
4.5.2 Power Circuit (78)
4.5.3 Control Schemes (78)
4.6 Battery/SC Powered E-scooter SPMSM Drive (83)
4.6.1 Hybrid Energy Operation Management (83)
4.6.2 Experimental Verification (86)

CHAPTER 5 G2V BATTERY CHARGING OPERATION (88)
5.1 Introduction (88)
5.2 System Configuration (88)
5.3 Half-bridge CLLC Resonant DC-DC Converter (89)
5.3.1 Operation Principle (89)
5.3.2 Design of System Components (93)
5.3.3 Control Strategy (96)
5.3.4 Measured Results (97)
5.4 G2V Charging Operation (100)
5.4.1 System Configurations (100)
5.4.2 Single-phase Full-bridge Boost SMR (101)
5.4.3 Experimental Results (104)

CHAPTER 6 PLUG-IN ENERGY HARVESTER (109)
6.1 Introduction (109)
6.2 Plug-in Energy Harvester with Three-phase AC Input (109)
6.2.1 Circuit Operation of Vienna SMR (110)
6.2.2 Equivalent Circuit (113)
6.2.3 Power Circuit Components (114)
6.2.4 Control Schemes (116)
6.2.5 Simulation Results (118)
6.2.6 Measured Results (118)
6.3 Plug-in Energy Harvester with Single-phase AC Input (121)
6.3.1 Circuit Operation (121)
6.3.2 Power Circuit (122)
6.3.3 Control Schemes (123)
6.3.4 Measured Results (123)
6.4 Plug-in Energy Harvester with DC Input (124)

CHAPTER 7 CONCLUSIONS (127)
REFERENCES (129)
[1] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, 2nd ed., New York: Wiley-IEEE, 2002.
[2] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[3] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[4] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, Jan. 2011.
[5] A. R. Salisa, N. Zhang, and J. G. Zhu, “A comparative analysis of fuel economy and emissions between a conventional HEV and the UTS PHEV,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 44-54, Jan. 2011.
[6] J. de Santiago, H. Brnhoff, B. Ekergurd, S. Eriksson, S. Ferhatovic, R. Waters, and H. Leijon., “Electrical motor drivelines in commercial all-electric vehicles: A review,” IEEE Trans. Veh. Technol. Vol. 61, no. 2, pp. 475-484, Feb. 2012.
[7] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[8] W. Wang, X. Chen, and J. Wang, “Motor/generator applications in electrified vehicle chassis-a survey,” IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 584-601, 2019.
[9] S. Saponara, C. H. T. Lee, N. X. Wang, and J. L. Kirtley, “Electric drives and power chargers: recent solutions to improve performance and energy efficiency for hybrid and fully electric vehicles,” IEEE Veh. Technol. Mag., vol. 15, no. 1, pp. 73-83, March 2020.
[10] L. Shao, A. E. H. Karci, D. Tavernini, A. Sorniotti, and M. Cheng, “Design approaches and control strategies for energy-efficient electric machines for electric vehicles- a review,” IEEE Access, vol. 8, pp. 116900-116913, 2020.
[11] R. Deng, Y. Liu, W. Chen, and H. Liang, “A survey on electric buses-energy storage, power management, and charging scheduling,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1, pp. 9-22, Jan. 2021.
[12] D. K. Ngo, H. N. Thai, and V. T. Trung, “Performance comparison of reluctance-based synchronous motors consider for electric scooter,” in Proc. IEEE ISEE, 2021, pp. 249-252.
[13] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[14] A. Kilthau and J. Pacas, “Appropriate models for the controls of the synchronous reluctance machine”, in Proc. IEEE IAS, 2002.
[15] K. M. Rahman and S. Hiti, “Identification of machine parameters of a synchronous motor,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 557-565, 2005.
[16] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[17] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, 3rd Ed., Somerset: Wiley, 2013.
[18] C. Yu, J. Tamura, and R. D. Lorenz, “Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage,” IEEE Trans. Ind. Appl. vol. 49, no. 6, pp. 2619-2627, Nov.-Dec. 2013.
[19] H. H. Choi, H. M. Yun, and Y. Kim, “Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 540- 547, 2015.
[20] S. C. Yang, Y. L. Hsu, P. H. Chou, J. Y. Chen, and G. R. Chen, “Digital implementation issues on high speed permanent magnet machine FOC drive under insufficient sample frequency,” IEEE Access, vol. 7, pp. 61484-61493, 2019.
[21] M. S. Rafaq and J. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4747-4758, 2020.
[22] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 171-180, Jan. 1992.
[23] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, Jan. 1999.
[24] Y. Sozer, D. A. Torrey, and S. Reva, “New inverter output filter topology for PWM motor drives,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1007-1017, Nov. 2000.
[25] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, June 2007.
[26] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[27] V. Michal, “Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4065- 4074, 2015.
[28] J. Guo, J. Ye, and A. Emadi, “DC-link current and voltage ripple analysis considering antiparallel diode reverse recovery in voltage source inverters,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5171-5180, June 2018.
[29] S. M. Tayebi, H. Hu, and I. Batarseh, “Advanced DC-Link voltage regulation and capacitor optimization for three-phase microinverters,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 307-317, Jan. 2019.
[30] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, June. 2008.
[31] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[32] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics- lead Acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, 2015, pp. 444-450.
[33] G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, and J. L. Morris, “Operating principles of the ultracapacitor,” IEEE Trans. Magn., vol. 25, no. 1, pp. 102-106, Jan. 1989.
[34] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, Dec. 2012.
[35] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, March. 2016.
[36] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, March 2016.
[37] Y. Fukushima, M. Fukuma, M. Hirose, K. I. Sugiyama, M. Kawami, K. Yoshino, S. Kishida, and S. S. Lee, “Application of electric double layer capacitor and water level sensor to rice field monitoring system,’’ in Proc. IEEE SENSORS, 2018, pp. 1-4.
[38] S. T. Hung, D. C. Hopkins, and C. R. Mosling, “Extension of battery life via charge equalization control,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 96-104, Feb. 1993.
[39] M. Corley, J. Locker, S. Dutton, and R. Spee, “Ultracapacitor-based ride-through system for adjustable speed drives,” in Proc. IEEE PESCR, 1999, pp. 26-31.
[40] H. Yoo, S. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[41] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[42] H. Xiaoliang, T. Hiramatsu, and H. Yoichi, “Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles,” in Proc. IEEE EVS, 2013, pp. 1-6.
[43] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
[44] R. D. Middlebrook, “Topics in multiple-Loop regulators and current-mode programming,” IEEE Trans. Power Electron., vol. PE-2, no. 2, pp. 109-124, April 1987.
[45] M. K. Kazimierczuk and S. T. Nguyen, “Small-signal analysis of open-loop PWM flyback DC-DC converter for CCM,” in Proc. IEEE National Aerospace and Electronics Conference. NAECON 1995, pp. 69-76.
[46] S. Inoue and H. Akagi, “A bi-directional DC/DC converter for an energy storage system,” in Proc. IEEE APEC, 2007, pp. 761-767.
[47] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, Feb. 2010.
[48] J. Biela, M. Schweizer, S. Waffler, and J. W. Kolar, “SiC versus Si-evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2872-2882, July. 2011.
[49] M. K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters, 2nd Ed., Newark: Wiley, 2015.
[50] L. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital Control of High- Frequency Switched-Mode Power Converters, 1st Ed., John Wiley & Sons, Inc., Hoboken, NJ., July 13, 2015.
[51] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC Converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July-Aug. 2015.
[52] G. Balen, A. R. Reis, H. Pinheiro, and L. Schuch, “Modeling and control of interleaved buck converter for electric vehicle fast chargers,” in Proc. IEEE COBEP, 2017, pp. 1-6.
[53] Y. Bao, L. Y. Wang, C. Wang, J. Jiang, C. Jiang, and C. Duan, “Adaptive feedforward compensation for voltage source disturbance rejection in DC-DC converters,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 344-351, Jan. 2018.
[54] A. Ayachit and M. K. Kazimierczuk, “Averaged small-signal model of PWM DC-DC converters in CCM including switching power loss,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 66, no. 2, pp. 262-266, Feb. 2019.
[55] A. Reatti, F. Corti, A. Tesi, A. Torlai, and M. K. Kazimierczuk, “Effect of parasitic components on dynamic performance of power stages of DC-DC PWM buck and boost converters in CCM,” in Proc. IEEE ISCAS, 2019, pp. 1-5.
[56] S. Inoue and H. Akagi, “A bi-directional DC/DC converter for an energy storage system,” in Proc. IEEE APEC, 2007, pp. 761-767.
[57] D. Hamza, M. Pahlevaninezhad, and P. K. Jain, “Implementation of a novel digital active EMI technique in a DSP-based DC-DC digital controller used in electric vehicle (EV),” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3126-3137, July. 2013.
[58] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Aug. 2015.
[59] M. Yilmaz and P. T. Krein, “Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[60] A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3475-3489, Oct. 2012.
[61] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[62] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[63] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018.
[64] A. Bahrami, “EV charging definitions, modes, levels, communication protocols and applied standards,” Ver. 1.2, Tech. Report, January 2020.
[65] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, March. 2015.
[66] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June 2015.
[67] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, March. 2017.
[68] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017, pp. 1-6.
[69] G. Su, “Comparison of Si, SiC, and GaN based isolation converters for onboard charger applications,” in Proc. IEEE ECCE, 2018, pp. 1233-1239.
[70] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, April. 2019.
[71] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, Feb. 2016.
[72] V. Monteiro, J. C. Ferreira, A. A. Nogueiras Meléndez, C. Couto, and J. L. Afonso, “Experimental validation of a novel architecture based on a dual-stage converter for off- board fast battery chargers of electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
[73] E. I. Pool-Mazun, J. J. Sandoval, P. N. Enjeti, and I. J. Pitel, “An integrated solid-state transformer with high-frequency isolation for EV fast-charging applications,” IEEE J. Emerg. Sel. Topics Ind. Electron., vol. 1, no. 1, pp. 46-56, July. 2020.
[74] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[75] D. Vincent, P. S. Huynh, N. A. Azeez, L. Patnaik, and S. S. Williamson, “Evolution of hybrid inductive and capacitive AC links for wireless EV charging - a comparative overview,” IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 1060-1077, Dec. 2019.
[76] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, March. 2016.
[77] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[78] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single-phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[79] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 108-115, Feb. 2005.
[80] H. Y. Kanaan and K. Al-Haddad, “Modeling techniques applied to switch-mode power converters: application to the boost-type single-phase full-bridge rectifier,” in Proc. IEEE CHSI, 2008, pp. 979-983.
[81] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[82] B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, “Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540-556, Nov. 2011.
[83] N. Mohan, Power Electronics: A First Course, Hoboken, New Jersey: Wiley, 2012.
[84] Y. Cho and J. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 165-175, Jan. 2013.
[85] T. Soeiro, T. Friedli, and J. W. Kolar, “Three-phase high power factor mains interface concepts for electric vehicle battery charging systems,” in Proc. IEEE APEC, 2012.
[86] J. Khodabakhsh and G. Moschopoulos, “A three-phase AC-DC converter with transformer isolation and reduced number of switches,” in Proc. IEEE CCECE, 2017.
[87] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[88] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[89] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhoa, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, pp.3375, Sep. 2019.
[90] G. Chen and K. M. Smedley, “Steady-state and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, April 2005.
[91] G. Chryssis, High-Frequency Switching Power Supply, 2nd ed. New York: McGraw-Hill, 1989.
[92] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[93] O. Deblecker, A. Moretti, and F. Vallee, “Comparative study of soft-switched Isolated DC- DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
[94] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745-2760, July 2012.
[95] S. Ryu, D. Kim, M. Kim, J. Kim, and B. Lee, “Adjustable frequency–duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5354-5362, Oct. 2014.
[96] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
[97] G. Liu, Y. Jang, M. M. Jovanović, and J. Q. Zhang, “Implementation of a 3.3-kW DC-DC converter for EV on-board charger employing the series-resonant converter with reduced-frequency-range control,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4168- 4184, June 2017.
[98] N. D. Dao, D. Lee, and Q. D. Phan, “High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10455-10465, Oct. 2020.
[99] Texas Instruments Inc., “TMS320F2837xD Dual-Core Microcontrollers,” TMS320F 28379D datasheet, December 2013 [Revised February, 2021].
[100] Texas Instruments Inc., “TMS320F2837xD Dual-Core Microcontrollers Technical Reference Manual,” December, 2013 [Revised September, 2019].
[101] Hestia Power Inc., “H1M065F020 Silicon Carbide MOSFET N-CHANNEL ENHANCEMENT MODE,” H1M065F020 datasheet, Rev. 2.1, September, 2020.
[102] Hestia Power Inc., “H1M065F050 Silicon Carbide MOSFET N-CHANNEL ENHANCEMENT MODE,” H1M065F050 datasheet, Rev. 2.2, September, 2020.
[103] Maxwell Technologies Inc., “16V SMALL CELL MODULE,” BMOD0058 E016 B02 datasheet, Document number: 1015371.6, 2014.
[104] Pihsiang Energy Technology Co,. Ltd., “PHET Lithium Iron Phosphate (LiFePO4) Secondary Cell Specification Product Model: IFR13N0-EP1500,” IFR13N0-EP1500 datasheet, Ver. 5.6, 13 September, 2019.
[105] “Product Data Sheet Core-EE5525,” EE5525, Cosmo Ferrites Ltd., 2022. [Online]. Available: https://www.cosmoferrites.com/product-size/e-cores/ee5525.
[106] “30W 1”x1” Package DC-DC Regulated Converter SKMW30 & DKMW30 series,” DKMW30G-15, Mean Well Enterprises Co., Ltd., 24 May, 2017. [Online]. Available: https://www.meanwell.com/webapp/product/search.aspx?prod=DKMW30.
[107] “15W 1”x1” Package DC-DC Regulated Converter SKMW15 & DKMW15 series,” DKMW15G-15, Mean Well Enterprises Co., Ltd., 04 August, 2020. [Online]. Available: https://www.meanwell.com/webapp/product/search.aspx?prod=DKMW15.
[108] “5W DC-DC Regulated Single Output Converter SCW05 series,” SCW05A-05, Mean Well Enterprises Co., Ltd., 23 March, 2018. [Online]. Available: https://www.mouser.tw/datasheet/2/260/SCW05_spec-2402353.pdf.
[109] “Low Cost, Miniature Isolation Amplifiers,” AD202, REV. D, Analog Devices Inc., 2002, [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD202_204.pdf.
[110] “Current Transducer HAS 100-S/SP105,” HAS 100-S, version 0, LEM, 03 August, 2016. [Online]. Available: https://www.lem.com/sites/default/files/products_datasheets/has_100-s_sp105.pdf.
[111] “HCPL-3180,” HCPL-3180, Avago Technologies, 10 March, 2009. [Online]. Available: https://docs.broadcom.com/doc/AV02-0165EN.
[112] “2.0 Amp Output Current IGBT Gate Drive Optocoupler,” HCPL-3120, Agilent Tec-hnologies, 1999. [Online]. Available: https://www.tme.eu/Document/dde4b33e41c14c71ffd1089c37a0b6d6/HCPL3120.pdf.
[113] “TLP250,” TLP250, Toshiba Electronic Devices & Storage Corporation, November, 1990. [Revised 17 June, 2019]. [Online]. Available: https://toshiba.semicon-storage.com/tw/semiconductor/product/optoelectronics/detail.TLP250.html.
[114] “Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8,” LTC1446, Rev. A, Linear T-echnology, 1996. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/1446fa.pdf.
[115] Advanced Micro Devices Inc., “Am26LS34 Quad Differential Line Receiver,” AM26LS34PC datasheet, Rev. B, May, 1991.
[116] “Ultralow Offset Voltage Operational Amplifier,” OP07, Rev. G, Analog Devices Inc., 2002-2011. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/op07.pdf.
[117] Texas Instruments Inc., “L07xx Low-Noise FET-Input Operational Amplifiers,” TL072 datasheet, Rev T, September 1978 [Revised December, 2021].
[118] EERE, “77%-82% of Energy Put into an Electric Car is Used to Move the Car Down the Road,” FOTW #1045, September 3, 2018. [Online]. Available: https://www.energy.gov/eere/vehicles/articles/fotw-1045-september-3-2018-77-82-energy-put-electric-car-used-move-car-down.
[119] EERE, “12-30% of Energy Put into a Conventional Car is Used to Move the Car Down the Road,” EERE., FOTW #1044, August 27, 2018. [Online]. Available: https://www.energy.gov/eere/vehicles/articles/fotw-1044-august-27-2018-12-30-energy-put-conventional-car-used-move-car-down.
[120] F. Golnaraghi, and B. C. Kuo, Automatic Control System, 9th Ed., New York : John Wiley & Sons., 2010.
[121] D. W. Hart, Power Electronics, New York : McGraw-Hill, 2011.
[122] W. Q. Huang, “Grid-connected electric vehicle induction motor drive system,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[123] H. C. Miao, “A varied voltage DC-link EV PMSM drive with bidirectional grid-connected capability,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[124] L. H. Wang, “Switched reluctance motor based electric vehicle and its grid-connected applications,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[125] J. Y. Hsu, “An electric scooter permanent-magnet synchronous motor drive with grid connected function,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2022.
電子全文 電子全文(網際網路公開日期:20280815)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊