跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阿希勒赫杜卡
研究生(外文):Akhil, Pradiprao-Khedulkar
論文名稱:金屬氧化物與農業廢棄物衍生生物炭複合材料之高效能超級電容器應用
論文名稱(外文):Unleashing Metal Oxide-Agricultural Waste-Derived Biochar Composites for Next-Generation High-Energy Supercapacitors
指導教授:董瑞安
指導教授(外文):Doong, Ruey-An
口試委員:蘇鎮芳王清海劉耕谷侯嘉洪
口試委員(外文):Su, ZhenfangTsinghai, WangKeng, Ku LiuChia, Hung Hou
口試日期:2023-05-19
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:171
中文關鍵詞:農業廢棄物茶葉衍生生物炭柑橘皮生物炭羅望種子生物炭多孔結構超級電容器
外文關鍵詞:agricultural wasteTea leaf-derived biocharOrange peel biocharTamarind seed biocharporous structuresustainable supercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用金屬氫氧化物和農業廢棄物衍生的生物炭進行了三種不同複合材料的製備與鑑定,同時作為高性能超級電容器的新穎電極材料。此三種材料包括花瓣狀 Ni(OH)2/茶葉衍生生物炭 (NiNF@TBC)、Co(OH)2/柑橘皮衍生生物炭 (CoNF@OBC) 和海膽狀 Ni-Co 氫氧化物/羅望種子衍生的生物炭 (U-NiCo-OH@TTBC)。研究結果發現複合材料的高度孔洞結構和層化結構有利於電解質離子和電子的擴散和傳輸,從而減少擴散路徑並提高儲能應用的電導率。複合材料中使用的生物炭載體的比表面積在 610 – 1340 m2 g-1 間,相當適合作為能源儲存的基材,同時也可作為綠色碳源。當使用三電極系統和對稱超級電容器裝置評估複合材料的電化學性能時, NiNF@TBC 電極表現出優異的電化學性能,在三電極電池中 1 A g-1 下的比電容為 945 F g-1,10,000 次循環後穩定性高達 95%;而利用 NiNF@TBC 製造的對稱超級電容器在 1 M Na2SO4 溶液中則具有 163 F g-1 的比電容值,且Ragone 圖譜顯示能量密度及功率密度可分別在 19 – 58 Wh kg-1 及 826 – 6321 W kg-1 範圍內。 CoNF@OBC 複合材料在 1 A g-1 下表現出 563 F g-1 的超高儲存能力,並在 10,000 次循環後保持 96% 的電容保持率。而利用CoNF@OBC製作的對稱超級比電容為102 F g-1,其能量密度在10 – 41 Wh kg-1,功率密度則在811~5143 W kg-1間。 U-NiCo-OH@TTBC 複合材料在 1 A g-1 時具有 759 F g-1 的比電容量。對稱性超級電容的功率密度為787~7183 W kg-1,能量密度為16~54 Wh kg-1。此外,此三種不同超級電容器在 10,000 次充放電循環後都顯示出 92 – 94% 的長期循環穩定性。此些結果證明了利用農業廢棄物作為綠色碳源並將其與各種金屬氫氧化物結合,可製備出具有高性能和高穩定性超級電容器應用的奈米材料。而研究也顯示所開發材料與技術具有高成本效益和環境友善的潛能,同時提供更穩定及潔淨的綠色能源。
This study presents a detailed investigation of three different composite materials based on metal hydroxides and agricultural waste-derived biochar as promising electrode materials for high-performance supercapacitors. Specifically, flower-like Ni(OH)2/spent tea leaf-derived biochar (NiNF@TBC), Co(OH)2/orange peel-derived biochar (CoNF@OBC), and urchin-shaped Ni-Co hydroxide/tamarind seed-derived biochar (U-NiCo-OH@TTBC) composites are synthesized and characterized for their electrochemical properties. The highly porous and hierarchical structure of the composites facilitates electrolyte ion and electron diffusion and transport, resulting in a decrease in diffusion path and an increase in conductivity for energy storage applications. The specific surface areas of the biochar supports used in the composites range from 610 m2 g-1 to 1340 m2 g-1, indicating their high potential as green carbon sources for sustainable energy storage. The electrochemical properties of the composites are evaluated using a three-electrode system and symmetric supercapacitor devices. The NiNF@TBC electrode shows excellent electrochemical properties with a specific capacitance of 945 F g-1 at 1 A g-1 in a three-electrode cell and high stability of 95% after 10,000 cycles. The symmetric supercapacitor fabricated with NiNF@TBC delivers a specific capacitance of 163 F g-1 in 1 M Na2SO4 solution. The Ragone plot of the symmetric device exhibits energy density in the range of 19 – 58 Wh kg-1 with power density in the scale of 826 – 6321 W kg-1. The CoNF@OBC composite exhibits an ultra-high remarkable storage capability of 563 F g-1 at 1 A g-1 and maintains 96% capacitance retention after 10,000 cycles. The symmetric device made with CoNF@OBC has a specific capacitance of 102 F g-1, and its Ragone plot shows that its energy density is between 10 and 41 Wh kg-1, and its power density is between 811 and 5143 W kg-1. The U-NiCo-OH@TTBC composite has an outstanding storage capacity of 759 F g-1 at 1 A g-1, with a specific capacitance of 158 F g-1 for the device. The power density of the symmetric device is between 787 and 7183 W kg-1, and its energy density is 16 to 54 Wh kg-1. Furthermore, all three devices show long-term cyclic stability of 92-94% after 10,000 charge-discharge cycles. Overall, these results demonstrate the feasibility of utilizing agricultural waste as a green carbon source and combining it with various metal hydroxides to produce hybrid nanomaterials for high-performance and sustainable supercapacitor applications. The study highlights the potential for cost-effective and eco-friendly energy storage solutions that can contribute to a more sustainable and cleaner future.
Abstract…………………………………………………………………………………………………...I
Acknowledgement……………………………………………………………………………………….V
Abbreviations…………………………………………………………………………………………...VI
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Overviews of supercapacitor 2
1.2.1. Supercapacitor as one promising energy storage device 2
1.2.2. Evolution of supercapacitor 8
1.2.3. Supercapacitor: Applications 10
1.2.4. Types of supercapacitors 11
1.2.5. Comparison of supercapacitors with other energy storage devices 21
1.2.6. Fundamental requirement of supercapacitor 24
1.3. Limitations of Supercapacitors 26
1.3.1. Low Energy Density: A Major Hurdle for Supercapacitors 26
1.3.2. Impact of low energy density on the storage capacity 28
1.3.3. Strategies to improve the energy density of supercapacitors 29
1.3.4. Metal Oxide-Biochar Composites as a Sustainable Approach 32
1.3.5. Metal Oxide Nanoparticles: Redox Properties and High Specific Capacitance 33
1.3.6. Biochar: Sustainable Carbon-based Material for Electrochemical Applications 35
Chapter 2. Literature Review 38
2.1. Metal oxide 38
2.1.1. Preparation Methods of Metal oxide 39
2.1.2. Electrochemical properties of Metal oxide 41
2.1.3. Metal oxide for supercapacitor production 42
2.2. Biochar 44
2.2.1. Biochar-derived carbon materials 45
2.3. Preparation Methods of Biochar-Derived Carbon Materials 48
2.3.1. Pyrolysis 48
2.3.2. Gasification 50
2.3.3. Hydrothermal carbonization (HTC) 51
2.3.4. Torrefaction 53
2.3.5. Isothermal carbonization 55
2.4. Post-treatment for biochar produced from agricultural waste 57
2.4.1. Activation process 57
2.5. Suitability of agricultural waste biochar in supercapacitor applications 62
2.6. Previous Research on Metal Oxide-Biochar Composites for Supercapacitors. 64
2.7. Aim and objectives 67
2.8. Thesis outline 70
Chapter 3. Material and Methodology 71
3.1. Reagents and chemical 71
3.2. Experimental 71
3.2.1. Preparation of hierarchical TBC 71
3.2.2. Synthesis of NiNF@TBC 72
3.2.3. Synthesis of hierarchical OBC 72
3.2.4. Synthesis of CoNF@OBC 73
3.2.5. Synthesis of hierarchical TTBC 74
3.2.6. Synthesis of U-NiCo-OH@TTBC 74
3.3. Characterization 75
3.3.1. X-ray diffraction………………………………………………………………………………75
3.3.2. Electron microcopy……………………………………………………………………………75
3.3.3. Nitrogen adsorption analysis………………………………………………………………….76
3.3.4. X-ray photoelectron spectroscopy……………………………………………………………76
3.3.5. Raman spectroscopy…………………………………………………………………………..77
3.3.6. Fourier transform infrared…………………………………………………………………...77
3.3.7. Thermal gravimetric analysis…………………………………...............................................77
3.4. Electrochemical analysis 78
Chapter 4. Flower-like nickel hydroxide@tea leaf-derived biochar composite for high-performance supercapacitor application………………………………………………………………………………80
4.1. Characterization of TBC and NiNF@TBC.............................................................................80
4.2. Electrochemical properties of electrodes…………………………………………………….87
4.3. Electrochemical properties of symmetric supercapacitor 96
Chapter 5. Cobalt-Doped orange peel-derived biochar for high-performance supercapacitor application 100
5.1. Characterization of OBC and CoNF@OBC 100
5.2. Electrochemical properties of electrodes 105
5.3. Electrochemical properties of symmetric supercapacitor .113
Chapter 6. Urchin-like binary nickel-cobalt hydroxide @tamarind seed-derived biochar composite for high-performance supercapacitor application 117
6.1. Characterization of TBC and U-NiCo-OH@TTBC 117
6.2. Electrochemical properties of electrode 124
6.3. Electrochemical properties of symmetric supercapacitor 131
Chapter 7: Conclusions and future scope of the work 134
7.1. Conclusion 134
7.2. Future scope of the work 138
References 141
[1] L. Al-Ghussain, Global warming: review on driving forces and mitigation, Environmental Progress & Sustainable Energy. 38 (2019) 13–21. https://doi.org/10.1002/ep.13041.
[2] B. Pandit, E.S. Goda, M.H. Abu Elella, A. ur Rehman, S. Eun Hong, S.R. Rondiya, P. Barkataki, S.F. Shaikh, A.M. Al-Enizi, S.M. El-Bahy, K. Ro Yoon, One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors, Journal of Energy Chemistry. 65 (2022) 116–126. https://doi.org/10.1016/j.jechem.2021.05.028.
[3] A. Gopalakrishnan, T.D. Raju, S. Badhulika, Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance, Carbon. 168 (2020) 209–219. https://doi.org/10.1016/j.carbon.2020.07.017.
[4] E.S. Goda, A. ur Rehman, B. Pandit, A. Al-Shahat Eissa, S. Eun Hong, K. Ro Yoon, Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors, Chemical Engineering Journal. 428 (2022) 132470. https://doi.org/10.1016/j.cej.2021.132470.
[5] B. Debnath, D. Haldar, M.K. Purkait, Potential and sustainable utilization of tea waste: A review on present status and future trends, Journal of Environmental Chemical Engineering. 9 (2021) 106179. https://doi.org/10.1016/j.jece.2021.106179.
[6] M.H. Abu Elella, E.S. Goda, H. Gamal, S.M. El-Bahy, M.A. Nour, K.R. Yoon, Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye, International Journal of Biological Macromolecules. 191 (2021) 385–395. https://doi.org/10.1016/j.ijbiomac.2021.09.040.
[7] S. Bhoyate, C.K. Ranaweera, C. Zhang, T. Morey, M. Hyatt, P.K. Kahol, M. Ghimire, S.R. Mishra, R.K. Gupta, Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves, Global Challenges. 1 (2017) 1700063. https://doi.org/10.1002/gch2.201700063.
[8] G. Mancini, A. Luciano, D. Bolzonella, F. Fatone, P. Viotti, D. Fino, A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions, Renewable and Sustainable Energy Reviews. 137 (2021) 110441. https://doi.org/10.1016/j.rser.2020.110441.
[9] A.P. Khedulkar, B. Pandit, V.D. Dang, R. Doong, Agricultural waste to real worth biochar as a sustainable material for supercapacitor, Science of The Total Environment. (2023) 161441. https://doi.org/10.1016/j.scitotenv.2023.161441.
[10] S.A. Al Kiey, M.S. Hasanin, Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste, Environ Sci Pollut Res. (2021). https://doi.org/10.1007/s11356-021-15276-5.
[11] X. Yang, S. Zhao, Z. Zhang, Y. Chi, C. Yang, C. Wang, Y. Zhen, D. Wang, F. Fu, R. Chi, Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor, Journal of Colloid and Interface Science. 614 (2022) 298–309. https://doi.org/10.1016/j.jcis.2022.01.093.
[12] L. Hou, W. Yang, Y. Li, P. Wang, B. Jiang, C. Xu, C. Zhang, G. Huang, F. Yang, Y. Li, Dual-template endowing N, O co-doped hierarchically porous carbon from potassium citrate with high capacitance and rate capability for supercapacitors, Chemical Engineering Journal. 417 (2021) 129289. https://doi.org/10.1016/j.cej.2021.129289.
[13] S.C. Kishore, R. Atchudan, T.N. Jebakumar Immanuel Edison, S. Perumal, M. Alagan, R. Vinodh, M. Shanmugam, Y.R. Lee, Solid Waste-Derived Carbon Fibers-Trapped Nickel Oxide Composite Electrode for Energy Storage Application, Energy Fuels. 34 (2020) 14958–14967. https://doi.org/10.1021/acs.energyfuels.0c02773.

[14] E. Adhamash, R. Pathak, Q. Qiao, Y. Zhou, R. McTaggart, Gamma-radiated biochar carbon for improved supercapacitor performance, RSC Advances. 10 (2020) 29910–29917. https://doi.org/10.1039/D0RA05764A.
[15] J. Ai, S. Yang, Y. Sun, M. Liu, L. Zhang, D. Zhao, J. Wang, C. Yang, X. Wang, B. Cao, Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors, Journal of Power Sources. 484 (2021) 229221. https://doi.org/10.1016/j.jpowsour.2020.229221.
[16] S. Azmi, M. Foroutan Koudahi, E. Frackowiak, Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications, Energy & Environmental Science. 15 (2022) 1156–1171. https://doi.org/10.1039/D1EE02920G.
[17] M.M. Baig, I.H. Gul, Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors, Biomass and Bioenergy. 144 (2021) 105909. https://doi.org/10.1016/j.biombioe.2020.105909.
[18] Y. Cai, Y. Luo, H. Dong, X. Zhao, Y. Xiao, Y. Liang, H. Hu, Y. Liu, M. Zheng, hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors, Journal of Power Sources. 353 (2017) 260–269. https://doi.org/10.1016/j.jpowsour.2017.04.021.
[19] N. Cai, H. Cheng, H. Jin, H. Liu, P. Zhang, M. Wang, Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors, Journal of Electroanalytical Chemistry. 861 (2020) 113933. https://doi.org/10.1016/j.jelechem.2020.113933.
[20] L. Wang, G. Mu, C. Tian, L. Sun, W. Zhou, P. Yu, J. Yin, H. Fu, Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors, ChemSusChem. 6 (2013) 880–889. https://doi.org/10.1002/cssc.201200990.
[21] X. Chen, J. Zhang, B. Zhang, S. Dong, X. Guo, X. Mu, B. Fei, A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor, Sci Rep. 7 (2017) 7362. https://doi.org/10.1038/s41598-017-06730-x.
[22] X. Bo, K. Xiang, Y. Zhang, Y. Shen, S. Chen, Y. Wang, M. Xie, X. Guo, Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor, Journal of Energy Chemistry. 39 (2019) 1–7. https://doi.org/10.1016/j.jechem.2019.01.006.
[23] S. Mehta, S. Jha, H. Liang, Lignocellulose materials for supercapacitor and battery electrodes: A review, Renewable and Sustainable Energy Reviews. 134 (2020) 110345. https://doi.org/10.1016/j.rser.2020.110345.
[24] Y. Chen, Z. Yin, D. Huang, L. Lei, S. Chen, M. Yan, L. Du, R. Xiao, M. Cheng, Uniform polypyrrole electrodeposition triggered by phytic acid-guided interface engineering for high energy density flexible supercapacitor, Journal of Colloid and Interface Science. 611 (2022) 356–365. https://doi.org/10.1016/j.jcis.2021.12.090.
[25] L. Cheng, P. Guo, R. Wang, L. Ming, F. Leng, H. Li, X.S. Zhao, Electrocapacitive properties of supercapacitors based on hierarchical porous carbons from chestnut shell, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 446 (2014) 127–133. https://doi.org/10.1016/j.colsurfa.2014.01.057.
[26] A.G. Olabi, Q. Abbas, A. Al Makky, M.A. Abdelkareem, Supercapacitors as next generation energy storage devices: Properties and applications, Energy. 248 (2022) 123617. https://doi.org/10.1016/j.energy.2022.123617.
[27] C. Falco, J.M. Sieben, N. Brun, M. Sevilla, T. van der Mauelen, E. Morallón, D. Cazorla-Amorós, M.-M. Titirici, Hydrothermal Carbons from Hemicellulose-Derived Aqueous Hydrolysis Products as Electrode Materials for Supercapacitors, ChemSusChem. 6 (2013) 374–382. https://doi.org/10.1002/cssc.201200817.
[28] M. Fan, H. Yuan, X. Zhang, B. Wang, X. Wang, Y. Gao, X. Zeng, B. Ren, X. Yang, Chicken nuggets-like core/shell nanosheet arrays as high performance flexible all-solid-state supercapacitor cathode and buckwheat shell as anode, International Journal of Hydrogen Energy. 46 (2021) 15181–15191. https://doi.org/10.1016/j.ijhydene.2021.02.023.
[29] M. Fu, W. Chen, X. Zhu, B. Yang, Q. Liu, Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors, Carbon. 141 (2019) 748–757. https://doi.org/10.1016/j.carbon.2018.10.034.
[30] J. Fu, J. Zhang, C. Jin, Z. Wang, T. Wang, X. Cheng, C. Ma, Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process, Bioresource Technology. 310 (2020) 123413. https://doi.org/10.1016/j.biortech.2020.123413.
[31] H. Gao, D. Zhang, H. Zhou, J. Wu, G. Xu, Z. Huang, M. Liu, J. Yang, D. Chen, Boosting gravimetric and volumetric energy density of supercapacitors by 3D pomegranate-like porous carbon structure design, Applied Surface Science. 534 (2020) 147613. https://doi.org/10.1016/j.apsusc.2020.147613.
[32] A. Dutta, J. Mahanta, T. Banerjee, Supercapacitors in the Light of Solid Waste and Energy Management: A Review, Advanced Sustainable Systems. 4 (2020) 2000182. https://doi.org/10.1002/adsu.202000182.
[33] A. Babu Ganganboina, E. Y. Park, R.-A. Doong, Boosting the energy storage performance of V 2 O 5 nanosheets by intercalating conductive graphene quantum dots, Nanoscale. 12 (2020) 16944–16955. https://doi.org/10.1039/D0NR04362A.
[34] A.C. Lokhande, S. Teotia, A.R. Shelke, T. Hussain, I.A. Qattan, V.C. Lokhande, S. Patole, J.H. Kim, C.D. Lokhande, Chalcopyrite based carbon composite electrodes for high performance symmetric supercapacitor, Chemical Engineering Journal. 399 (2020) 125711. https://doi.org/10.1016/j.cej.2020.125711.
[35] X. Wu, Z. Shi, R. Tjandra, A.J. Cousins, S. Sy, A. Yu, R.M. Berry, K.C. Tam, Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes, J. Mater. Chem. A. 3 (2015) 23768–23777. https://doi.org/10.1039/C5TA07252B.
[36] Md.A. Islam, H.L. Ong, A.R. Villagracia, K.A. A. Halim, A.B. Ganganboina, R.-A. Doong, Biomass–derived cellulose nanofibrils membrane from rice straw as sustainable separator for high performance supercapacitor, Industrial Crops and Products. 170 (2021) 113694. https://doi.org/10.1016/j.indcrop.2021.113694.
[37] N. Swain, A. Mitra, B. Saravanakumar, S.K. Balasingam, S. Mohanty, S.K. Nayak, A. Ramadoss, Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors, Electrochimica Acta. 342 (2020) 136041. https://doi.org/10.1016/j.electacta.2020.136041.

[38] H. Jin, S. Wu, T. Li, Y. Bai, X. Wang, H. Zhang, H. Xu, C. Kong, H. Wang, Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors, Applied Surface Science. 488 (2019) 593–599. https://doi.org/10.1016/j.apsusc.2019.05.308.
[39] Y. Qiu, Y. Lin, H. Yang, L. Wang, Ni-doped cobalt hexacyanoferrate microcubes as battery-type electrodes for aqueous electrolyte-based electrochemical supercapacitors, Journal of Alloys and Compounds. 806 (2019) 1315–1322. https://doi.org/10.1016/j.jallcom.2019.07.253.

[40] I. Kaushal, S. Maken, A. Kumar Sharma, SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application, Korean Chemical Engineering Research. 56 (2018) 694–704. https://doi.org/10.9713/KCER.2018.56.5.694.
[41] Q. Li, J. Guo, D. Xu, J. Guo, X. Ou, Y. Hu, H. Qi, F. Yan, Electrospun N-Doped Porous Carbon Nanofibers Incorporated with NiO Nanoparticles as Free-Standing Film Electrodes for High-Performance Supercapacitors and CO2 Capture, Small. 14 (2018) 1704203. https://doi.org/10.1002/smll.201704203.

[42] G. Fu, H. Li, Q. Bai, C. Li, Y. Shen, H. Uyama, Dual-doping activated carbon with hierarchical pore structure derived from polymeric porous monolith for high performance EDLC, Electrochimica Acta. 375 (2021) 137927. https://doi.org/10.1016/j.electacta.2021.137927.
[43] Y. Chen, X. Guo, A. Liu, H. Zhu, T. Ma, Recent Progress of Biomass-derived Carbon Materials used for Secondary Batteries, Sustainable Energy & Fuels. (2021). https://doi.org/10.1039/D1SE00265A.
[44] T. Liu, L. Zhang, B. Cheng, W. You, J. Yu, Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance, Chemical Communications. 54 (2018) 3731–3734. https://doi.org/10.1039/C8CC00991K.
[45] Y. Liu, C. Li, C. Liu, Y. Chen, K. An, K. Landskron, Probing the electrolyte infiltration behaviour of activated carbon supercapacitor electrodes by in situ neutron scattering using aqueous NaCl as electrolyte, Carbon. 136 (2018) 139–142. https://doi.org/10.1016/j.carbon.2018.04.072.
[46] X. Liu, S. Zhang, X. Wen, X. Chen, Y. Wen, X. Shi, E. Mijowska, High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage, Sci Rep. 10 (2020) 3518. https://doi.org/10.1038/s41598-020-60625-y.
[47] C. Chang, H. Wang, Y. Zhang, S. Wang, X. Liu, L. Li, Fabrication of Hierarchical Porous Carbon Frameworks from Metal-Ion-Assisted Step-Activation of Biomass for Supercapacitors with Ultrahigh Capacitance, ACS Sustainable Chem. Eng. 7 (2019) 10763–10772. https://doi.org/10.1021/acssuschemeng.9b01455.
[48] B. Pandit, B.R. Sankapal, Cerium Selenide Nanopebble/Multiwalled Carbon Nanotube Composite Electrodes for Solid-State Symmetric Supercapacitors, ACS Appl. Nano Mater. 5 (2022) 3007–3017. https://doi.org/10.1021/acsanm.2c00374.
[49] B. Ren, M. Fan, B. Zhang, J. Wang, Novel Hollow NiO@Co3O4 Nanofibers for High-Performance Supercapacitors, Journal of Nanoscience and Nanotechnology. 18 (2018) 7004–7010. https://doi.org/10.1166/jnn.2018.15451.
[50] P. Santhoshkumar, N. Shaji, M. Nanthagopal, J.W. Park, C. Senthil, C.W. Lee, Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries, Journal of Power Sources. 470 (2020) 228459. https://doi.org/10.1016/j.jpowsour.2020.228459.
[51] S. Kim, N. Lee, S.W. Lee, Y.T. Kim, J. Lee, Upcycling of waste teabags via catalytic pyrolysis in carbon dioxide over HZSM-11, Chemical Engineering Journal. 412 (2021) 128626. https://doi.org/10.1016/j.cej.2021.128626.
[52] M. Tsarpali, N. Arora, J.N. Kuhn, G.P. Philippidis, Lipid-extracted algae as a source of biomaterials for algae biorefineries, Algal Research. 57 (2021) 102354. https://doi.org/10.1016/j.algal.2021.102354.
[53] A. Samecka-Cymerman, A.J. Kempers, Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry, Ecotoxicology and Environmental Safety. 59 (2004) 64–69. https://doi.org/10.1016/j.ecoenv.2003.12.002.
[54] M.C. Goci, A. Leudjo Taka, L. Martin, M.J. Klink, Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution, Polymers. 15 (2023) 482. https://doi.org/10.3390/polym15030482.
[55] P. Wang, H. Zhou, C. Meng, Z. Wang, K. Akhtar, A. Yuan, Cyanometallic framework-derived hierarchical Co3O4-NiO/graphene foam as high-performance binder-free electrodes for supercapacitors, Chemical Engineering Journal. 369 (2019) 57–63. https://doi.org/10.1016/j.cej.2019.03.080.
[56] X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song, L. Zhi, All-biomaterial supercapacitor derived from bacterial cellulose, Nanoscale. 8 (2016) 9146–9150. https://doi.org/10.1039/C6NR01485B.
[57] B. Uma, K.S. Anantharaju, S. Malini, S. S. More, Y.S. Vidya, S. Meena, B.S. Surendra, Synthesis of novel heterostructured Fe-doped Cu2O/CuO/Cu nanocomposite: Enhanced sunlight driven photocatalytic activity, antibacterial and supercapacitor properties, Ceramics International. (2022). https://doi.org/10.1016/j.ceramint.2022.08.032.
[58] N.A. Nasrudin, J. Jewaratnam, M.A. Hossain, P.B. Ganeson, Performance comparison of feedforward neural network training algorithms in modelling microwave pyrolysis of oil palm fibre for hydrogen and biochar production, Asia-Pacific Journal of Chemical Engineering. 15 (2020) e2388. https://doi.org/10.1002/apj.2388.
[59] Y.H. Navale, S.T. Navale, I.A. Dhole, F.J. Stadler, V.B. Patil, Specific capacitance, energy and power density coherence in electrochemically synthesized polyaniline-nickel oxide hybrid electrode, Organic Electronics. 57 (2018) 110–117. https://doi.org/10.1016/j.orgel.2018.02.037.

[60] Z. Tan, J. Yang, Y. Liang, M. Zheng, H. Hu, H. Dong, Y. Liu, Y. Xiao, The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors, Journal of Colloid and Interface Science. 585 (2021) 778–786. https://doi.org/10.1016/j.jcis.2020.10.058.
[61] M. Karuppaiah, P. Sakthivel, S. Asaithambi, R. Murugan, G.A. babu, R. Yuvakkumar, G. Ravi, Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications, Ceramics International. 45 (2019) 4298–4307. https://doi.org/10.1016/j.ceramint.2018.11.104.
[62] A. Pradiprao Khedulkar, V. Dien Dang, B. Pandit, T. Ai Ngoc Bui, H. Linh Tran, R. Doong, Flower-like nickel hydroxide@tea leaf-derived biochar composite for high-performance supercapacitor application, Journal of Colloid and Interface Science. (2022). https://doi.org/10.1016/j.jcis.2022.04.178.
[63] S. Feng, R. Kumar Singh, Y. Fu, Z. Li, Y. Wang, J. Bao, Z. Xu, G. Li, C. Anderson, L. Shi, Y. Lin, P. G. Khalifah, W. Wang, J. Liu, J. Xiao, D. Lu, Low-tortuous and dense single-particle-layer electrode for high-energy lithium-sulfur batteries, Energy & Environmental Science. 15 (2022) 3842–3853. https://doi.org/10.1039/D2EE01442D.
[64] M. Ma, W. Cai, Y. Chen, Y. Li, F. Tan, J. Zhou, Flower-like NiMn-layered double hydroxide microspheres coated on biomass-derived 3D honeycomb porous carbon for high-energy hybrid supercapacitors, Industrial Crops and Products. 166 (2021) 113472. https://doi.org/10.1016/j.indcrop.2021.113472.
[65] B. Pandit, S.R. Rondiya, N.Y. Dzade, S.F. Shaikh, N. Kumar, E.S. Goda, A.A. Al-Kahtani, R.S. Mane, S. Mathur, R.R. Salunkhe, High Stability and Long Cycle Life of Rechargeable Sodium-Ion Battery Using Manganese Oxide Cathode: A Combined Density Functional Theory (DFT) and Experimental Study, ACS Appl. Mater. Interfaces. 13 (2021) 11433–11441. https://doi.org/10.1021/acsami.0c21081.
[66] K. Xiao, L.-X. Ding, H. Chen, S. Wang, X. Lu, H. Wang, Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors, J. Mater. Chem. A. 4 (2016) 372–378. https://doi.org/10.1039/C5TA08591H.
[67] D. Wang, B. Guan, Y. Li, D. Li, Z. Xu, Y. Hu, Y. Wang, H. Zhang, Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors, Journal of Alloys and Compounds. 737 (2018) 238–247. https://doi.org/10.1016/j.jallcom.2017.12.095.

[68] D. Pontiroli, S. Scaravonati, G. Magnani, L. Fornasini, D. Bersani, G. Bertoni, C. Milanese, A. Girella, F. Ridi, R. Verucchi, L. Mantovani, A. Malcevschi, M. Riccò, Super-activated biochar from poultry litter for high-performance supercapacitors, Microporous and Mesoporous Materials. 285 (2019) 161–169. https://doi.org/10.1016/j.micromeso.2019.05.002.
[69] B. Tao, J. He, F. Miao, Y. Zhang, MnO2/NiCo2O4 loaded on nickel foam as a high-performance electrode for advanced asymmetric supercapacitor, Vacuum. 195 (2022) 110668. https://doi.org/10.1016/j.vacuum.2021.110668.
[70] G. Nagaraju, S.M. Cha, J.S. Yu, Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material, Sci Rep. 7 (2017) 45201. https://doi.org/10.1038/srep45201.
[71] S. Shin, M.W. Shin, Nickel metal–organic framework (Ni-MOF) derived NiO/C@CNF composite for the application of high performance self-standing supercapacitor electrode, Applied Surface Science. 540 (2021) 148295. https://doi.org/10.1016/j.apsusc.2020.148295.
[72] S. Liu, W. Bian, Z. Yang, J. Tian, C. Jin, M. Shen, Z. Zhou, R. Yang, A facile synthesis of CoFe2O4/biocarbon nanocomposites as efficient bi-functional electrocatalysts for the oxygen reduction and oxygen evolution reaction, J. Mater. Chem. A. 2 (2014) 18012–18017. https://doi.org/10.1039/C4TA04115A.
[73] Y. Zhao, H. Hao, T. Song, X. Wang, C. Li, W. Li, High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode, Journal of Power Sources. 521 (2022) 230941. https://doi.org/10.1016/j.jpowsour.2021.230941.
[74] J. Ai, S. Yang, Y. Sun, M. Liu, L. Zhang, D. Zhao, J. Wang, C. Yang, X. Wang, B. Cao, Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors, Journal of Power Sources. 484 (2021) 229221. https://doi.org/10.1016/j.jpowsour.2020.229221.
[75] L. Cheng, P. Guo, R. Wang, L. Ming, F. Leng, H. Li, X.S. Zhao, Electrocapacitive properties of supercapacitors based on hierarchical porous carbons from chestnut shell, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 446 (2014) 127–133. https://doi.org/10.1016/j.colsurfa.2014.01.057.
[76] A.I.M. Albashir, Q. Zhang, M.K. Hadi, Y. Iradukunda, F. Ran, Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor, J Mater Sci: Mater Electron. 32 (2021) 28480–28493. https://doi.org/10.1007/s10854-021-07229-y.
[77] L. Ma, G. Sun, J. Ran, S. Lv, X. Shen, H. Tong, One-Pot Template-Free Strategy toward 3D Hierarchical Porous Nitrogen-Doped Carbon Framework in Situ Armored Homogeneous NiO Nanoparticles for High-Performance Asymmetric Supercapacitors, ACS Appl. Mater. Interfaces. 10 (2018) 22278–22290. https://doi.org/10.1021/acsami.8b05967.
[78] E. Cevik, A. Bozkurt, Redox active polymer metal chelates for use in flexible symmetrical supercapacitors: Cobalt-containing poly(acrylic acid) polymer electrolytes, (2021). https://doi.org/10.1016/j.jechem.2020.07.014.
[79] X. Han, Z.-H. Huang, F. Meng, B. Jia, T. Ma, Redox-etching induced porous carbon cloth with pseudocapacitive oxygenic groups for flexible symmetric supercapacitor, Journal of Energy Chemistry. 64 (2022) 136–143. https://doi.org/10.1016/j.jechem.2021.04.035.
[80] X. Zhao, B.M. Sánchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale. 3 (2011) 839–855. https://doi.org/10.1039/C0NR00594K.
[81] T.A.N. Bui, T.G. Nguyen, W. Darmanto, R.-A. Doong, 3-Dimensional ordered reduced graphene oxide embedded with N-doped graphene quantum dots for high performance supercapacitors, Electrochimica Acta. 361 (2020) 137018. https://doi.org/10.1016/j.electacta.2020.137018.
[82] J. Adorna, M. Borines, V.D. Dang, R.-A. Doong, Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization, Desalination. 492 (2020) 114602. https://doi.org/10.1016/j.desal.2020.114602.
[83] S. Shin, M.W. Shin, Nickel metal–organic framework (Ni-MOF) derived NiO/C@CNF composite for the application of high performance self-standing supercapacitor electrode, Applied Surface Science. 540 (2021) 148295. https://doi.org/10.1016/j.apsusc.2020.148295.
[84] A. Kumar, E. Singh, R. Mishra, S. Kumar, Biochar as environmental armour and its diverse role towards protecting soil, water and air, Science of The Total Environment. 806 (2022) 150444. https://doi.org/10.1016/j.scitotenv.2021.150444.
[85] J. Ahmad, F. Patuzzi, U. Rashid, M. Shahabz, C. Ngamcharussrivichai, M. Baratieri, Exploring untapped effect of process conditions on biochar characteristics and applications, Environmental Technology & Innovation. 21 (2021) 101310. https://doi.org/10.1016/j.eti.2020.101310.
[86] Y. Bao, Y. Deng, M. Wang, Z. Xiao, M. Wang, Y. Fu, Z. Guo, Y. Yang, L. Wang, A controllable top-down etching and in-situ oxidizing strategy: metal-organic frameworks derived α-Co/Ni(OH)2@Co3O4 hollow nanocages for enhanced supercapacitor performance, Applied Surface Science. 504 (2020) 144395. https://doi.org/10.1016/j.apsusc.2019.144395.
[87] C. Mevada, M. Mukhopadhyay, Electrochemical performance enhancement of high mass loading H-RuO2NPs electrode and aqueous symmetrical supercapacitor in the neutral electrolyte, Journal of Energy Storage. 30 (2020) 101453. https://doi.org/10.1016/j.est.2020.101453.
[88] Y. Bai, W. Wang, R. Wang, J. Sun, L. Gao, Controllable synthesis of 3D binary nickel–cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors, J. Mater. Chem. A. 3 (2015) 12530–12538. https://doi.org/10.1039/C5TA01804H.

[89] R. Remmani, R. Makhloufi, M. Miladi, A. Ouakouak, A. Canales, D. Núñez-Gómez, Development of Low-Cost Activated Carbontowards an Eco-Efficient Removal of OrganicPollutants from Oily Wastewater, Pol. J. Environ. Stud. 30 (2021) 1801–1808. https://doi.org/10.15244/pjoes/125765.
[90] S.M. Nyambura, W. Jufei, L. Hua, F. Xuebin, P. Xingjia, L. Bohong, R. Ahmad, X. Jialiang, G.V. Bertrand, J. Ndiithi, L. Xuhui, Microwave co-pyrolysis of kitchen food waste and rice straw for waste reduction and sustainable biohydrogen production: Thermo-kinetic analysis and evolved gas analysis, Sustainable Energy Technologies and Assessments. 52 (2022) 102072. https://doi.org/10.1016/j.seta.2022.102072.
[91] M. Genovese, J. Jiang, K. Lian, N. Holm, High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob, Journal of Materials Chemistry A. 3 (2015) 2903–2913. https://doi.org/10.1039/C4TA06110A.
[92] Y.M. Awad, J. Wang, A.D. Igalavithana, D.C.W. Tsang, K.H. Kim, S.S. Lee, Y.S. Ok, Biochar Effects on Rice Paddy: Meta-analysis, in: D.L. Sparks (Ed.), Advances in Agronomy, Academic Press Inc., 2018: pp. 1–32. https://doi.org/10.1016/bs.agron.2017.11.005.
[93] S. Ge, P.N.Y. Yek, Y.W. Cheng, C. Xia, W.A. Wan Mahari, R.K. Liew, W. Peng, T.-Q. Yuan, M. Tabatabaei, M. Aghbashlo, C. Sonne, S.S. Lam, Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach, Renewable and Sustainable Energy Reviews. 135 (2021) 110148. https://doi.org/10.1016/j.rser.2020.110148.
[94] J. Lang, L. Matějová, A.K. Cuentas-Gallegos, D.R. Lobato-Peralta, K. Ainassaari, M.M. Gómez, J.L. Solís, D. Mondal, R.L. Keiski, G.J.F. Cruz, Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials, Journal of Environmental Chemical Engineering. 9 (2021) 105979. https://doi.org/10.1016/j.jece.2021.105979.
[95] T. Ketwong, E. Rabang Halabaso, T. Kim Anh Nguyen, C. Areeprasert, R.-A. Doong, Comparative study on pilot-scale production of CuO-loaded activated biochar and hydrochar from oil-palm empty fruit bunches for high-performance symmetric supercapacitor application, Journal of Electroanalytical Chemistry. 905 (2022) 115970. https://doi.org/10.1016/j.jelechem.2021.115970.
[96] X. Gao, H. Zhang, E. Guo, F. Yao, Z. Wang, H. Yue, Hybrid two-dimensional nickel oxide-reduced graphene oxide nanosheets for supercapacitor electrodes, Microchemical Journal. 164 (2021) 105979. https://doi.org/10.1016/j.microc.2021.105979.
[97] Y. Lin, Z. Chen, C. Yu, W. Zhong, Facile synthesis of high nitrogen-doped content, mesopore-dominated biomass-derived hierarchical porous graphitic carbon for high performance supercapacitors, Electrochimica Acta. 334 (2020) 135615. https://doi.org/10.1016/j.electacta.2020.135615.
[98] P. Siwatch, K. Sharma, N. Singh, N. Manyani, S.K. Tripathi, Enhanced supercapacitive performance of reduced graphene oxide by incorporating NiCo2O4 quantum dots using aqueous electrolyte, Electrochimica Acta. 381 (2021) 138235. https://doi.org/10.1016/j.electacta.2021.138235.
[99] X. Gao, Y. Zhao, K. Dai, J. Wang, B. Zhang, X. Shen, NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors, Chemical Engineering Journal. 384 (2020) 123373. https://doi.org/10.1016/j.cej.2019.123373.

[100] H. Liu, S. Wu, C. You, N. Tian, Y. Li, N. Chopra, Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding, Carbon. 172 (2021) 569–596. https://doi.org/10.1016/j.carbon.2020.10.067.
[101] D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco, C.U. Pittman, Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars, Chemical Engineering Journal. 236 (2014) 513–528. https://doi.org/10.1016/j.cej.2013.09.057.
[102] L. He, Y. Fan, J. Bellettre, J. Yue, L. Luo, A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs, Renewable and Sustainable Energy Reviews. 119 (2020) 109589. https://doi.org/10.1016/j.rser.2019.109589.
[103] C. Zhang, S.-H. Ho, W.-H. Chen, Y. Fu, J.-S. Chang, X. Bi, Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage, Applied Energy. 235 (2019) 428–441. https://doi.org/10.1016/j.apenergy.2018.10.090.
[104] A. Bibi, S. Naz, M. Uroos, Evaluating the Effect of Ionic Liquid on Biosorption Potential of Peanut Waste: Experimental and Theoretical Studies, ACS Omega. 6 (2021) 22259–22271. https://doi.org/10.1021/acsomega.1c02957.
[105] S.E.M. Pourhosseini, O. Norouzi, P. Salimi, H.R. Naderi, Synthesis of a Novel Interconnected 3D Pore Network Algal Biochar Constituting Iron Nanoparticles Derived from a Harmful Marine Biomass as High-Performance Asymmetric Supercapacitor Electrodes, ACS Sustainable Chem. Eng. 6 (2018) 4746–4758. https://doi.org/10.1021/acssuschemeng.7b03871.
[106] S.S. Siwal, Q. Zhang, N. Devi, A.K. Saini, V. Saini, B. Pareek, S. Gaidukovs, V.K. Thakur, Recovery processes of sustainable energy using different biomass and wastes, Renewable and Sustainable Energy Reviews. 150 (2021) 111483. https://doi.org/10.1016/j.rser.2021.111483.
[107] A.R. Tobi, J.O. Dennis, H.M. Zaid, Evaluation of low-cost high performance solid-state supercapacitor derived from physically and chemically activated oil palm fiber, Materials Letters. 285 (2021) 129127. https://doi.org/10.1016/j.matlet.2020.129127.
[108] W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.-M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties, Biomass and Bioenergy. 84 (2016) 37–48. https://doi.org/10.1016/j.biombioe.2015.11.010.
[109] N. Iberahim, S. Sethupathi, M.J.K. Bashir, R. Kanthasamy, T. Ahmad, Evaluation of oil palm fiber biochar and activated biochar for sulphur dioxide adsorption, Science of The Total Environment. 805 (2022) 150421. https://doi.org/10.1016/j.scitotenv.2021.150421.
[110] A. Veksha, T.I. Bhuiyan, J.M. Hill, Activation of Aspen Wood with Carbon Dioxide and Phosphoric Acid for Removal of Total Organic Carbon from Oil Sands Produced Water: Increasing the Yield with Bio-Oil Recycling, Materials. 9 (2016) 20. https://doi.org/10.3390/ma9010020.
[111] J. Xia, N. Zhang, S. Chong, D. Li, Y. Chen, C. Sun, Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor, Green Chemistry. 20 (2018) 694–700. https://doi.org/10.1039/C7GC03426A.
[112] Z.-W. Ma, H.-Q. Liu, Q.-F. Lü, Porous biochar derived from tea saponin for supercapacitor electrode: Effect of preparation technique, Journal of Energy Storage. 40 (2021) 102773. https://doi.org/10.1016/j.est.2021.102773.
[113] A.A. Mohammed, C. Chen, Z. Zhu, Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells, Journal of Colloid and Interface Science. 538 (2019) 308–319. https://doi.org/10.1016/j.jcis.2018.11.103.
[114] L. Niu, C. Shen, L. Yan, J. Zhang, Y. Lin, Y. Gong, C. Li, C.Q. Sun, S. Xu, Waste bones derived nitrogen–doped carbon with high micropore ratio towards supercapacitor applications, Journal of Colloid and Interface Science. 547 (2019) 92–101. https://doi.org/10.1016/j.jcis.2019.03.097.
[115] Y. Hu, Batunacun, L. Zhen, D. Zhuang, Assessment of Land-Use and Land-Cover Change in Guangxi, China, Sci Rep. 9 (2019) 2189. https://doi.org/10.1038/s41598-019-38487-w.
[116] R. García, M.V. Gil, A. Fanjul, A. González, J. Majada, F. Rubiera, C. Pevida, Residual pyrolysis biochar as additive to enhance wood pellets quality, Renewable Energy. 180 (2021) 850–859. https://doi.org/10.1016/j.renene.2021.08.113.
[117] G. Prasannamedha, P.S. Kumar, R. Mehala, T.J. Sharumitha, D. Surendhar, Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse, Journal of Hazardous Materials. 407 (2021) 124825. https://doi.org/10.1016/j.jhazmat.2020.124825.
[118] R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renewable and Sustainable Energy Reviews. 15 (2011) 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.
[119] N.S. Rathore, A. Pawar, N.L. Panwar, Kinetic analysis and thermal degradation study on wheat straw and its biochar from vacuum pyrolysis under non-isothermal condition, Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01360-w.
[120] N. Surayah Osman, N. Sapawe, M. Adhwa’Uthaqif Sapuan, M. Farhan Mohd Fozi, M. Haikal Iskandar Fakhrul Azman, A. Harith Zafrul Fazry, M. Zafri Haiqal Zainudin, M. Farhan Hanafi, Sunflower shell waste as an alternative animal feed, Materials Today: Proceedings. 5 (2018) 21905–21910. https://doi.org/10.1016/j.matpr.2018.07.049.
[121] A. Czaikoski, R.L. da Cunha, F.C. Menegalli, Rheological behavior of cellulose nanofibers from cassava peel obtained by combination of chemical and physical processes, Carbohydrate Polymers. 248 (2020) 116744. https://doi.org/10.1016/j.carbpol.2020.116744.
[122] D. Wang, B. Guan, Y. Li, D. Li, Z. Xu, Y. Hu, Y. Wang, H. Zhang, Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors, Journal of Alloys and Compounds. 737 (2018) 238–247. https://doi.org/10.1016/j.jallcom.2017.12.095.
[123] W. Chen, J. Wang, K.Y. Ma, M. Li, S.H. Guo, F. Liu, J.P. Cheng, Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor, Applied Surface Science. 451 (2018) 280–288. https://doi.org/10.1016/j.apsusc.2018.04.254.
[124] Z.-H. Huang, F.-F. Sun, Z.-Y. Yuan, W. Sun, B. Jia, H. Li, H. Li, T. Ma, An electro-activated bimetallic zinc-nickel hydroxide cathode for supercapacitor with super-long 140,000 cycle durability, Nano Energy. 82 (2021) 105727. https://doi.org/10.1016/j.nanoen.2020.105727.
[125] B. Pandit, S.R. Rondiya, R.W. Cross, N.Y. Dzade, B.R. Sankapal, Vanadium telluride nanoparticles on MWCNTs prepared by successive ionic layer adsorption and reaction for solid-state supercapacitor, Chemical Engineering Journal. 429 (2022) 132505. https://doi.org/10.1016/j.cej.2021.132505.
[126] W. Younas, M. Naveed, C. Cao, Y. Zhu, C. Du, X. Ma, N. Mushtaq, M. Tahir, M. Naeem, Facile One-Step Microwave-Assisted Method to Synthesize Nickel Selenide Nanosheets for High-Performance Hybrid Supercapacitor, Journal of Colloid and Interface Science. 608 (2022) 1005–1014. https://doi.org/10.1016/j.jcis.2021.09.153.
[127] T. Liu, L. Zhang, B. Cheng, W. You, J. Yu, Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance, Chemical Communications. 54 (2018) 3731–3734. https://doi.org/10.1039/C8CC00991K.
[128] B. Pandit, E.S. Goda, M. Ubaidullah, S.F. Shaikh, U.T. Nakate, A.P. Khedulkar, A. ul H.S. Rana, D. Kumar, R. Doong, Hexagonal δ-MnO2 nanoplates as efficient cathode material for potassium-ion batteries, Ceramics International. (2022). https://doi.org/10.1016/j.ceramint.2022.03.279.
[129] S. Zhang, Y. Pang, Y. Wang, B. Dong, S. Lu, M. Li, S. Ding, NiO nanosheets anchored on honeycomb porous carbon derived from wheat husk for symmetric supercapacitor with high performance, Journal of Alloys and Compounds. 735 (2018) 1722–1729. https://doi.org/10.1016/j.jallcom.2017.11.294.
[130] R. Paste, S.A. Abbas, A. Singh, H.-C. Lin, C.W. Chu, Oxygen-Enriched α-MoO3–x nanobelts suppress lithium dendrite formation in stable lithium-metal batteries, Journal of Power Sources. 507 (2021) 230306. https://doi.org/10.1016/j.jpowsour.2021.230306.
[131] L. Kebabsa, J. Kim, D. Lee, B. Lee, Highly porous cobalt oxide-decorated carbon nanofibers fabricated from starch as free-standing electrodes for supercapacitors, Applied Surface Science. 511 (2020) 145313. https://doi.org/10.1016/j.apsusc.2020.145313.
[132] Y.H. Navale, S.T. Navale, I.A. Dhole, F.J. Stadler, V.B. Patil, Specific capacitance, energy and power density coherence in electrochemically synthesized polyaniline-nickel oxide hybrid electrode, Organic Electronics. 57 (2018) 110–117. https://doi.org/10.1016/j.orgel.2018.02.037.
[133] S.A. Al Kiey, M.S. Hasanin, Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste, Environ Sci Pollut Res. (2021). https://doi.org/10.1007/s11356-021-15276-5.
[134] S.C. Kishore, R. Atchudan, T.N. Jebakumar Immanuel Edison, S. Perumal, M. Alagan, R. Vinodh, M. Shanmugam, Y.R. Lee, Solid Waste-Derived Carbon Fibers-Trapped Nickel Oxide Composite Electrode for Energy Storage Application, Energy Fuels. 34 (2020) 14958–14967. https://doi.org/10.1021/acs.energyfuels.0c02773.
[135] N. Swain, A. Mitra, B. Saravanakumar, S.K. Balasingam, S. Mohanty, S.K. Nayak, A. Ramadoss, Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors, Electrochimica Acta. 342 (2020) 136041. https://doi.org/10.1016/j.electacta.2020.136041.
[136] Q. Li, J. Guo, D. Xu, J. Guo, X. Ou, Y. Hu, H. Qi, F. Yan, Electrospun N-Doped Porous Carbon Nanofibers Incorporated with NiO Nanoparticles as Free-Standing Film Electrodes for High-Performance Supercapacitors and CO2 Capture, Small. 14 (2018) 1704203. https://doi.org/10.1002/smll.201704203.
[137] B. Ren, M. Fan, B. Zhang, J. Wang, Novel Hollow NiO@Co3O4 Nanofibers for High-Performance Supercapacitors, Journal of Nanoscience and Nanotechnology. 18 (2018) 7004–7010. https://doi.org/10.1166/jnn.2018.15451.
[138] P. Wang, H. Zhou, C. Meng, Z. Wang, K. Akhtar, A. Yuan, Cyanometallic framework-derived hierarchical Co3O4-NiO/graphene foam as high-performance binder-free electrodes for supercapacitors, Chemical Engineering Journal. 369 (2019) 57–63. https://doi.org/10.1016/j.cej.2019.03.080.
[139] M. Karuppaiah, P. Sakthivel, S. Asaithambi, R. Murugan, G.A. babu, R. Yuvakkumar, G. Ravi, Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications, Ceramics International. 45 (2019) 4298–4307. https://doi.org/10.1016/j.ceramint.2018.11.104.
[140] X. Shi, L. Sun, X. Li, L. Wu, J. Qian, J. Wang, Y. Lin, S. Su, C. Sun, Y. Zhang, Y. Zhang, High-performance flexible supercapacitor enabled by Polypyrrole-coated NiCoP@CNT electrode for wearable devices, Journal of Colloid and Interface Science. 606 (2022) 135–147. https://doi.org/10.1016/j.jcis.2021.08.016.
[141] A.I.M. Albashir, Q. Zhang, M.K. Hadi, Y. Iradukunda, F. Ran, Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor, J Mater Sci: Mater Electron. 32 (2021) 28480–28493. https://doi.org/10.1007/s10854-021-07229-y.
[142] B. Tao, J. He, F. Miao, Y. Zhang, MnO2/NiCo2O4 loaded on nickel foam as a high-performance electrode for advanced asymmetric supercapacitor, Vacuum. 195 (2022) 110668. https://doi.org/10.1016/j.vacuum.2021.110668.
[143] D. Wang, A. Wei, L. Tian, A. Mensah, D. Li, Y. Xu, Q. Wei, Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor, Applied Surface Science. 483 (2019) 593–600. https://doi.org/10.1016/j.apsusc.2019.03.345.
[144] Y. Bai, W. Wang, R. Wang, J. Sun, L. Gao, Controllable synthesis of 3D binary nickel–cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors, J. Mater. Chem. A. 3 (2015) 12530–12538. https://doi.org/10.1039/C5TA01804H.
[145] X. Gao, H. Zhang, E. Guo, F. Yao, Z. Wang, H. Yue, Hybrid two-dimensional nickel oxide-reduced graphene oxide nanosheets for supercapacitor electrodes, Microchemical Journal. 164 (2021) 105979. https://doi.org/10.1016/j.microc.2021.105979.
[146] P. Siwatch, K. Sharma, N. Singh, N. Manyani, S.K. Tripathi, Enhanced supercapacitive performance of reduced graphene oxide by incorporating NiCo2O4 quantum dots using aqueous electrolyte, Electrochimica Acta. 381 (2021) 138235. https://doi.org/10.1016/j.electacta.2021.138235.
[147] X. Gao, Y. Zhao, K. Dai, J. Wang, B. Zhang, X. Shen, NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors, Chemical Engineering Journal. 384 (2020) 123373. https://doi.org/10.1016/j.cej.2019.123373.
[148] A.A. Sadeghi Ghazvini, E. Taheri-Nassaj, B. Raissi, R. Riahifar, M. Sahba Yaghmaee, M. Shaker, Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode, Materials Letters. 285 (2021) 129195. https://doi.org/10.1016/j.matlet.2020.129195.
[149] S. Yan, R. Li, X. Fu, W. Yuan, L. Jin, Y. Li, X. Wang, Y. Zhang, Porous Polyimide-Based Activated Carbon Fibers for CO2 Capture and Supercapacitor, Energy Fuels. (2022). https://doi.org/10.1021/acs.energyfuels.2c01513.
[150] M. Chen, Q. Ge, M. Qi, X. Liang, F. Wang, Q. Chen, Cobalt oxides nanorods arrays as advanced electrode for high performance supercapacitor, Surface and Coatings Technology. 360 (2019) 73–77. https://doi.org/10.1016/j.surfcoat.2018.12.128.
[151] D. Xu, D. Xuan, Y. Liao, F. Luo, T. Lyu, M. Chen, C. Liu, Q. Liu, Z. Wang, S. Li, D. Wang, Z. Zheng, L. Bu, Lignin-derived carbon membrane for the preparation of composite electrodes and applications in supercapacitors, Diamond and Related Materials. 129 (2022) 109344. https://doi.org/10.1016/j.diamond.2022.109344.
[152] P.M. Kharade, J.V. Thombare, A.R. Babar, R.N. Bulakhe, S.B. Kulkarni, D.J. Salunkhe, Electrodeposited nanoflakes like hydrophilic Co3O4 as a supercapacitor electrode, Journal of Physics and Chemistry of Solids. 120 (2018) 207–210. https://doi.org/10.1016/j.jpcs.2018.04.035.
[153] L. Liu, X. An, Z. Tian, G. Yang, S. Nie, Z. Shang, H. Cao, Z. Cheng, S. Wang, H. Liu, Y. Ni, Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes, Industrial Crops and Products. 187 (2022) 115457. https://doi.org/10.1016/j.indcrop.2022.115457.
[154] R. Lakra, R. Kumar, P.K. Sahoo, D. Sharma, D. Thatoi, A. Soam, Facile synthesis of cobalt oxide and graphene nanosheets nanocomposite for aqueous supercapacitor application, Carbon Trends. 7 (2022) 100144. https://doi.org/10.1016/j.cartre.2021.100144.
[155] M. Jing, H. Hou, Y. Yang, Y. Zhu, Z. Wu, X. Ji, Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor, Electrochimica Acta. C (2015) 198–205. https://doi.org/10.1016/j.electacta.2015.03.032.
[156] X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials, ACS Appl. Mater. Interfaces. 5 (2013) 8790–8795. https://doi.org/10.1021/am402681m.
[157] C. Wu, J. Cai, Y. Zhu, K. Zhang, Nanoforest of hierarchical core/shell CuO@NiCo2O4 nanowire heterostructure arrays on nickel foam for high-performance supercapacitors, RSC Adv. 6 (2016) 63905–63914. https://doi.org/10.1039/C6RA10033C.
[158] R.K. Nare, S. Ramesh, P.K. Basavi, V. Kakani, C. Bathula, H.M. Yadav, P.B. Dhanapal, R.K.R. Kotanka, V.R. Pasupuleti, Sonication-supported synthesis of cobalt oxide assembled on an N-MWCNT composite for electrochemical supercapacitors via three-electrode configuration, Sci Rep. 12 (2022) 1998. https://doi.org/10.1038/s41598-022-05964-8.
[159] Y. Duan, T. Hu, L. Yang, J. Gao, S. Guo, M. Hou, X. Ye, Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors, Journal of Alloys and Compounds. 771 (2019) 156–161. https://doi.org/10.1016/j.jallcom.2018.08.204.
[160] B. Devi, A. Jain, B. Roy, B. Rao R, N.R. Tummuru, A. Halder, R.R. Koner, Cobalt-Embedded N-Doped Carbon Nanostructures for Oxygen Reduction and Supercapacitor Applications, ACS Appl. Nano Mater. 3 (2020) 6354–6366. https://doi.org/10.1021/acsanm.0c00732.
[161] R. Aliakbari, E. Kowsari, H.R. Naderi, S. Ramakrishna, A. Chinnappan, M.D. Najafi, N-heterocycle-functionalized graphene oxide complexed with cobalt(II) as symmetric supercapacitor electrodes, Journal of Alloys and Compounds. 914 (2022) 165371. https://doi.org/10.1016/j.jallcom.2022.165371.
[162] R. Kumar, A. Soam, V. Sahajwalla, Carbon coated cobalt oxide (CC-CO 3 O 4 ) as electrode material for supercapacitor applications, Materials Advances. 2 (2021) 2918–2923. https://doi.org/10.1039/D1MA00120E.
[163] B. Ren, M. Fan, X. Yang, L. Wang, H. Yu, 3D Hierarchical structure Electrodes of MnO2 Nanosheets Decorated on Needle-like NiCo2O4 Nanocones on Ni Foam as a cathode material for Asymmetric Supercapacitors, ChemistrySelect. 4 (2019) 5641–5650. https://doi.org/10.1002/slct.201901018.
[164] R.R. Palem, G. Shimoga, I. Rabani, C. Bathula, Y.-S. Seo, H.-S. Kim, S.-Y. Kim, S.-H. Lee, Ball-milling route to design hierarchical nanohybrid cobalt oxide structures with cellulose nanocrystals interface for supercapacitors, International Journal of Energy Research. 46 (2022) 8398–8412. https://doi.org/10.1002/er.7744.
[165] K. Xu, J. Yang, J. Hu, Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors, Journal of Colloid and Interface Science. 511 (2018) 456–462. https://doi.org/10.1016/j.jcis.2017.09.113.
[166] W.D. Wang, P.P. Zhang, S.Q. Gao, B.Q. Wang, X.C. Wang, M. Li, F. Liu, J.P. Cheng, Core-shell nanowires of NiCo2O4@α-Co(OH)2 on Ni foam with enhanced performances for supercapacitors, Journal of Colloid and Interface Science. 579 (2020) 71–81. https://doi.org/10.1016/j.jcis.2020.06.048.
[167] J. Dong, S. Li, Y. Ding, Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors, Journal of Alloys and Compounds. 845 (2020) 155701. https://doi.org/10.1016/j.jallcom.2020.155701.
[168] J. Du, M. Li, J. Song, X. Gao, S. Hou, A. Chen, In-situ activator-induced evolution of morphology on carbon materials for supercapacitors, Journal of Colloid and Interface Science. 630 (2023) 61–69. https://doi.org/10.1016/j.jcis.2022.09.113.
[169] C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis, Advanced Energy Materials. 7 (2017) 1602391. https://doi.org/10.1002/aenm.201602391.
[170] S. Huang, Y. Ding, Y. Li, X. Han, B. Xing, S. Wang, Nitrogen and Sulfur Co-doped Hierarchical Porous Biochar Derived from the Pyrolysis of Mantis Shrimp Shell for Supercapacitor Electrodes, Energy Fuels. 35 (2021) 1557–1566. https://doi.org/10.1021/acs.energyfuels.0c04042.
[171] S. Nayak, K. Kumar Das, K. Parida, Indulgent of the physiochemical features of MgCr-LDH nanosheets towards photodegradation process of methylene blue, Journal of Colloid and Interface Science. 634 (2023) 121–137. https://doi.org/10.1016/j.jcis.2022.12.050.
[172] Y. Zhou, J. Li, Y. Yang, B. Luo, X. Zhang, E. Fong, W. Chu, K. Huang, Unique 3D flower-on-sheet nanostructure of NiCo LDHs: Controllable microwave-assisted synthesis and its application for advanced supercapacitors, Journal of Alloys and Compounds. 788 (2019) 1029–1036. https://doi.org/10.1016/j.jallcom.2019.02.328.
[173] W. Zhang, Y.-P. Chen, L. Zhang, J.-J. Feng, X.-S. Li, A.-J. Wang, Theophylline-regulated pyrolysis synthesis of nitrogen-doped carbon nanotubes with iron-cobalt nanoparticles for greatly boosting oxygen reduction reaction, Journal of Colloid and Interface Science. 626 (2022) 653–661. https://doi.org/10.1016/j.jcis.2022.06.130.
[174] X. Yue, Z. Chen, C. Xiao, G. Song, S. Zhang, H. He, Synthesis of CNT@CoS/NiCo Layered Double Hydroxides with Hollow Nanocages to Enhance Supercapacitors Performance, Nanomaterials. 12 (2022) 3509. https://doi.org/10.3390/nano12193509.
[175] B. Pandit, E.S. Goda, M.H. Abu Elella, A. ur Rehman, S. Eun Hong, S.R. Rondiya, P. Barkataki, S.F. Shaikh, A.M. Al-Enizi, S.M. El-Bahy, K. Ro Yoon, One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors, Journal of Energy Chemistry. 65 (2022) 116–126. https://doi.org/10.1016/j.jechem.2021.05.028.
[176] A. Mateen, M.Z. Ansari, I. Hussain, S.M. Eldin, M.D. Albaqami, A.A.A. Bahajjaj, M.S. Javed, K.-Q. Peng, Ti2CTx–MXene aerogel based ultra–stable Zn–ion supercapacitor, Composites Communications. 38 (2023) 101493. https://doi.org/10.1016/j.coco.2023.101493.
[177] Z. Zhang, Z. Wang, F. Wang, T. Qin, H. Zhu, P. Liu, G. Zhao, X. Wang, F. Kang, L. Wang, C. Yang, A Laser-Processed Carbon-Titanium Carbide Heterostructure Electrode for High-Frequency Micro-Supercapacitors, Small. n/a (n.d.) 2300747. https://doi.org/10.1002/smll.202300747.
[178] F. Zahedi, M. Shabani-Nooshabadi, Porous structure Ni/CuCo2O4 core–shell as a novel type of three-dimensional electrode with facile fabrication and binder-free toward enhanced methanol oxidation and supercapacitor performances, Fuel. 335 (2023) 127083. https://doi.org/10.1016/j.fuel.2022.127083.
[179] X.-H. Yu, Z.-Y. Zhao, J.-L. Yi, S. Liu, R.-L. Zhang, F.-Y. Wang, L. Liu, Facile assembly of cobalt-nickel double hydroxide nanoflakes on nitrogen-doped hollow carbon spheres for high performance asymmetric supercapacitors, Journal of Alloys and Compounds. 918 (2022) 165551. https://doi.org/10.1016/j.jallcom.2022.165551.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top