跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/25 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江慧玲
研究生(外文):CHIANG, HUI-LING
論文名稱:漸拆鷹架式自主學習在mBot教學中對學習參與度與自我調整能力的影響
論文名稱(外文):Influence of Autonomous Learning in Scaffold-Fading mBot Teaching on Students’ Engagement and Self-Regulation Learning Abilities
指導教授:林豪鏘林豪鏘引用關係
指導教授(外文):LIN, HAO-CHIANG
口試委員:曾俊雄蘇彥寧
口試日期:2023-06-02
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:數位學習科技學系碩士在職專班
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:86
中文關鍵詞:科技輔助自主學習漸拆鷹架學習參與度自我調整學習mBot機器人
外文關鍵詞:Technology-assisted autonomous learningScaffold fadingLearning participationSelf-regulated learningmBot Robot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
摘要
21世紀是面對數位浪潮的世代,在AI數位學習、資訊科技發展趨勢及108新課綱上路之下,科技輔助自主學習已是全球學習的重要趨勢。其中機器人教育乃是基於這樣的演進,為全球各國家所積極發展的政策,除了具資訊素養能力的培養外,也為學生建立該世紀所需的關鍵技能,如STEM知識、解決問題、創造力及學習能力等。
考量學生進入不同領域都會經歷一段探索期與學徒階段,有研究提到使用鷹架教學工具,可以有效減少學習者於學習過程中混淆的情況,並能促進發展的機會,但鷹架教學的最終目的在於需要運用鷹架漸拆策略,以協助學生架構自我學習鷹架,使學生能夠在脫離鷹架輔助後,能具備自主學習能力。
故本研究係以南部某國小的mBot機器人教學為例,運用科技輔助自主學習對有無搭配漸拆鷹架自學紀錄單來進行教學,並對其成果進行研究、分析,期能有助非資訊專長教師,更甚者對機器人教學無經驗的教師,其未來於機器人教學上的運用,如若此教學法有成效,或許可解師資有限之困境。同時本研究也探討學習參與度及學習成效和自我調整能力的影響情況。
本研究之統計方法主要採用描述性統計、迴歸係數同質性檢定、獨立樣本單因子單共變量共變數分析。而相關結論有下列:
1.在科技輔助自主學習中使用漸拆鷹架自學紀錄單進行機器人課程能更有效的幫助學生提升學習成效,並且具有高度顯著效果。
2.在科技輔助自主學習中使用漸拆鷹架自學紀錄單進行機器人課程能更有效的幫助學生提升學習參與度,並且具有顯著差異。
3.在科技輔助自主學習中使用漸拆鷹架自學紀錄單進行機器人課程可提升學生自我調整學習,但與未使用漸拆鷹架自學紀錄單者無顯著差異。

Abstract
In the 21st century, facing the generation of digital waves, under the development trend of AI digital learning, information technology development, and 108 new curriculum on the road, technology auxiliary autonomous learning is an important trend of global learning. Among them, robotics education is based on such evolution to actively develop policies in countries around the world. In addition to the cultivation of information literacy ability, it also establishes key skills needed for students, such as STEM knowledge, problem solving, creativity and learning ability, etc.
Considering that students enter different fields, they will go through a period of exploration and apprenticeships. Some studies mentioned that the use of eagle frame teaching tools can effectively reduce the situation of confusion in the learning process and promote development. The purpose is to use the eagle frame to gradually dismantle strategy to help students study the eagle frame, so that students can have self -oriented learning ability after leaving the eagle frame assistance.
Therefore, this study takes the teaching of mBot robot in an elementary school in the south as an example, uses technology-assisted self-learning to teach whether there is a self-study record sheet with or without gradually dismantling the scaffolding, and conducts research and analysis on its results, hoping to help non-information Expert teachers, even teachers who have no experience in robot teaching, their future use of robot teaching, if this teaching method is effective, may solve the plight of limited teachers. At the same time, this study also explores the influence of learning participation and learning effectiveness.
The statistical methods of this study mainly use descriptive statistics, regression coefficient homogeneous test, and common variable analysis. The related conclusions are the following:
1. The use of a self -learning record for the racking eagle frame in the technical assistance self -learning can help students improve their learning results more effectively, and have a high degree of significant effects.
2. The use of the self -study record of the gradual disassembly of the eagle frame in the self -learning self -study of technology can help students improve their learning participation more effectively, and have a significant difference.
3. In technology-assisted autonomous learning, using the gradually dismantled scaffolding self-study record sheet for robotics courses can improve students' self-adjustment learning, but there is no significant difference from those who do not use the gradually dismantled scaffolding self-study record sheet.

中文摘要 i
英文摘要 ii
誌謝辭 iv
目次 v
表次 vii
圖次 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與研究問題 7
第三節 研究對象與範圍 7
第四節 名詞解釋 8
第五節 論文架構 9
第二章 文獻探討 11
第一節 科技輔助自主學習 11
第二節 鷹架教學及漸拆策略 15
第三節 學生的學習參與 17
第四節 機器人課程學習成效 19
第五節 教育機器人及應用現況 20
第三章 研究方法 27
第一節 研究設計與架構 27
第二節 研究程序 30
第三節 研究場域與對象 33
第四節 學習輔具—機器人硬體 35
第五節 學習輔具—機器人軟體 37
第六節 課程說明 39
第七節 研究工具 44
第八節 資料處理與分析 45
第四章 實驗結果與分析 47
第一節 漸拆式鷹架自主學習的學習成效及差異分析 47
第二節 漸拆式鷹架自主學習的學習參與分析 50
第三節 漸拆式鷹架自主學習的自我調整學習分析 51
第四節 討論 52
第五章 結論與建議 55
第一節 結論 55
第二節 研究建議 56
參考文獻 58
附錄 67
附錄一、台灣機器人實作技能檢定 67
附錄二、自我調整學習 (Self-regulated learning) 74
附錄三、學生參與度量表 76
附錄四、漸拆鷹架自學紀錄單 77
附錄五、後測任務圖 80
附錄六、學生習寫之漸拆鷹架自學紀錄單 81

中文
朱元楷、梁至中、蔡孟蓉(2020)。中小學教師將機器人融入教學的態度、信念、動機及與機器人教學內容知識間的關係。數位學習科技期刊,12(2),75-97。
余佩樺(2016)。芬蘭教改如何打造新課綱?天下雜誌。https://www.cw.com.tw/article/5078654。
吳娜慧(2014)。提升國小新生班級常規自主學習能力之行動研究〔未出版之碩士論文〕。臺北市立大學。
李金鳳(2016)。玩轉 Arduino 自走車與 moLo Sport 互動式娛樂健身車於物聯網環境之應用系統。建國科大社會人文期刊(特稿),35(1),61-78。
李隆盛、楊秀全(2019)。範例引導學習與問題導向學習之教學策略對國小學生機器人程式學習的影響。數位學習科技期刊,11(4),77-104。
林清山、程炳林(1995)。國中生自我調整學習因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。師大教育心理學報,28,15-58。
林業盈(2015)。應用樂高機器人發展資優教育方案之教學實例分析與探討。資優教育,137,33-44。
姚經政、林呈彥(2016)。STEM 教育應用於機器人教學-以 6E 教學模式結合差異化教學。科技與人力教育季刊,3(1),53-75。
韋岱思(2017)。荷蘭最新教改方向:重視學生獨立追求知識的能力。親子天下。https://flipedu.parenting.com.tw/article/4110。
唐立安(2011)。以鷹架引導為基礎的遊戲式學習之學習成效研究—以國小六年級體積課程為例〔未出版之碩士論文〕,國立交通大學。
翁楊絲茜、夏至賢、王湄雁(2014)。樂高機器人輔助程式學習之探討。數位學習科技期刊,6(4),1-12。
張玉山、張雅富、陳冠吟(2016)。 Kolb 經驗學習理論於國中機器人活動之教學應用。科技與人力教育季刊,2(4),1-16。
張至維(2011年1月15日)。教育機器人不只在未來。數位典藏與學習電子報。https://newsletter.teldap.tw/news/InsightReportContent.php?nid=4273&lid=489
張春興(1996)。教育心理學:三化取向的理論與實踐。臺灣東華書局。
張家盛(2004),考量鷹架撤除於概念構圖輔助網路學習活動對學習成效影響之研究〔未出版之碩士論文〕,國立臺南大學
梁雲霞(2006)。從自主學習理論到學校實務:概念架構與方案發展。當代教育研究,14(4),171-206。
梁雲霞、周良基、王佩蘭(2003年3月21日)。以自主學習帶動創造力:自主學習方案的開創與省思。發表於國立政治大學創新與創造力研究中心(主編),創造力實踐力成研討會論文專輯(下冊)(頁764-785)。臺北市,臺灣。
深美教學團隊(2002)。看見想像的學校:教學創新在深美國小的實作紀錄。遠流出版公司。
莊淑芬(2010)。國小學童自我調整學習與科技概念學習之相關研究—以工博館食品工業廳為例〔未出版之碩士論文〕。高雄師範大學工業科技教育學系。
莫慕貞(2016)。自主學習的定義。香港教育大學。
陳育賢(2018)。國小學童程式運算思維能力分析:以mBot機器人為例〔未出版之碩士論文〕。國立臺南大學。
陳定邦(2003)。鷹架教學概念在成人學習歷程上應用之研究-以空大《統計學》課輔教學為例〔未出版之博士論文〕。國立臺灣師範大學。
陳怡靜、張基成( 2015)。兩岸機器人教育的現況與發展。中等教育,66(3),37-59。
陳玟伶(2001)。國小高年級兒童自我調整歷程之個案研究〔未出版之碩士論文〕。國立臺中師範學院國民教育研究所。
陳敏銓(2017)。不同鷹架教學策略對綜合活動學習領域學習成效影響之研究-以繩結編織課程為例。教育研究學報,51(2),53-70。
楊秀全(2021)。範例引導與問題導向混合學習策略對國小學生機器人程式學習成效的影響〔未出版之博士論文〕。國立臺灣師範大學。
楊語承、吳宇凡、施君潔、陳淑蕙(2020) 科技輔助自主學習,師友雙月刊,620,28-35。
詹志禹、吳璧純(2015)。偏鄉教育創新發展。教育研究月刊,258,29-41。
詹翔閔、翁慶昌(2015)。淺海機器人教育聯盟及機器人實作教學。中等教育,66(3),60-69。
趙嘉浩、梁至中、蔡孟蓉(2017)。機器人課程教材鷹架對高中生未來關鍵學習能力的影響。數位學習科技期刊,9(3),95-114。
劉蔚之(2008年6月27日)。歐盟「關鍵能力」建置之最新現況。教育評鑑與發展研究中心電子報。http://epaper.creed.ntnu.edu.tw/index.php?id=16
鄧運林(1995)。成人教學與自我導向學習。五南圖書。
鄭宇珺(2012)。以Scratch結合樂高機器人在合作學習之探究—以國小高年級學生為例〔未出版之碩士論文〕。國立新竹教育大學。
鄭詠心(2018)。藉由mBot機器人探討台南偏鄉國小學童程式課程的持續使用意圖〔未出版之碩士論文〕。國立雲林科技大學。
鄭維勛(2016)。國小高年級學童自我調整學習與數位閱讀素養之相關研究〔未出版之碩士論文〕。國立屏東大學。
蕭佳明、黃瑛綺(2012)。樂高機器人應用於科學與創意教育市場創業之研究,遠東學報,29(3),375-386。
謝宜真(2020)。因材網輔助自主學習課堂模式對國小學生自主學習能力及自然科學習成效之影響-以電腦自我效能為調節變項〔未出版之碩士論文〕。國立臺灣師範大學。
謝慶華(2016) 國中生自然與生活科技學習動機、學習參與和學習成就之相關研究〔未出版之博士論文〕。國立彰化師範大學。
簡錦鳳(2007)。文字鷹架對七年級學生科學解釋能力的影響〔未出版之碩士論文〕。國立臺灣師範大學。
簡錦鳳(2008)。文字鷹架對七年級學生科學解釋能力的影響〔未出版之碩士論文〕。國立臺灣師範大學。
藍偉瑩(2017年2月1日)。自主學習——從教師做起。翻轉教育。https://flipedu.parenting.com.tw/article/3148
龐維國(2005)。自主學習-學與教的原理和策略。華東師範大學出版社。

外文
Ahmed, W., van der Werf, G., Kuyper, H., & Minnaert, A. (2013). Emotions, self-regulated learning, and achievement in mathematics: A growth curve analysis. Journal of Educational Psychology, 105(1), 150-161.
Altin, H., & Pedaste, M. (2013). Learning approaches to applying robotics in science education. Journal of Baltic Science Education, 12(3), 365-378.
Altin, H., & Pedaste, M. (2013). Learning approaches to applying robotics in science education. Journal of Baltic Science Education, 12(3), 365-378.
Bandura, A. (1986). Social foundations of thought and action: A social
cognitive theory. Englewood Cliffs, NJ, US: Prentice-Hall.
Beach, P. (2017). Self-Directed Online Learning: A Theoretical Model for Understanding Elementary Teachers’ Online Learning Experiences. Teaching and Teacher Education, 61, 60-72.
Beeby, C. E. (1966). The Quality of Education in the Developing Countries. Harvard University Press
Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the Web with KIE.International Journal of Science Education, Special Issue (22), 797–817.
Benitti, F.(2012). Exploring the educational potential of robotics in schools: A sySTEMatic review. Computers & Education,58 (3), 978-988.
Berk, L. E., & Winsler, A. (1995). Scaffolding children' s learning: Vygotsky and early childhood education. Washington, DC: National Association for The Education of Young Children
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: exploration of an early childhood robotics curriculum. Computers & Education, 72, 145- 157.
Bredenfeld, A., Hofmann, A., & Steinbauer, G. (2010). Robotics in education initiatives in Europe-status, shortcomings and open questions. In Workshop Proceedings of Intl. Conf. on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2010) .
Chapman, E. (2003). Alternative approaches to assessing student engagement rates. Practical assessment,research and evaluation, 13(8). Retrieved from https://pareonline.net/getvn.asp?v=8&n=13
Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V. (2018). Exploring the Effect of a Robotics Laboratory on Computational Thinking Skills in Primary School Children Using the Bebras Tasks. TEEM 2018, 25-30.
Ching, Y., Yang, D., Wang, S. et al. (2019).Elementary School Student Development of STEM Attitudes and Perceived Learning in a STEM Integrated Robotics Curriculum. TechTrends,63,590-601.
Chou, P.-N.(2018). Skill development and knowledge acquisition cultivated by maker education: Evidence from Arduino-based educational robotics. Eurasia Journal of Mathematics, Science and Technology Education,14(10).
Coelho, A. D.,Assis, W. O.,Silva, J. G.(2009).The Scientific Initiation as an Instrument of Training for Future Researchers.9th IFIP World Conference on Computers in Education-WCCE.
Egbert, J., Shahrokni, S. A., Abobaker, R., & Borysenko, N. (2021). “It's a chance to make mistakes”: Processes and outcomes of coding in 2nd grade classrooms. Computers & Education, 168, 104173
Ekstrom, S., & Pareto, L. (2022). The dual role of humanoid robots in education: As didactic tools and social actors. Education and Information Technologies. 03 June 2022,. https://doi.org/10.1007/s10639-022-11132-2
Finn, J. D., & Voelk, K. E. (1993). School characteristics related to student engagement. Journal of Negro Education, 62(3), 249-268.
Fong, C. J., & Krause, J. M. (2014).Lost confidence and potential: A mixed methods study of underachieving college students' sources of self-efficacy. Social Psychology of Education, 17, 249-268.
Fredricks, J. F., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109
Greenfield, P. M. (1984). Mind and Media: The effects of Television, Video game, and Computers. Cambridge, Mass: Harvard University Press.
Greenfield, P. M. (1984). A theory of the teacher in the learning activities of everyday life. In B. Rogoff & J. Lave (Eds.), Everyday cognition: Its development in social context (pp.117-138).Cambridge, MA: Harvard University Press
Greenwood, C. R., Horton, B. T., & Utley, C. A. (2002).Academic engagement: Current perspectives on research and practices. School Psychology Review, 31(3), 328-349.
Grover, S., & Pea, R. (2013). Computational Thinking in K–12. Educational Researcher, 42(1), 38-43.
Heirweg, S., De Smul, M., Merchie, E. et al. (2020) Mine the process: investigating the cyclical nature of upper primary school students’ self-regulated learning. 48, 337–369.
Hogan,K. & Pressley, M. (1997). Becoming a scaffolder of student’s learning. In K. Hogan & Pressley(Eds.), Scaffolding children’s learning. Cambridge, MA: Brookline Books
Judith Ann, W. W. (1993). Weekend Report : A qualitative study of the scaffolding
strategies used by a teacher of children with handicaps during a “sharing time”
discourse event. Dissertation : University of Cincinnati.
Kandlhofer, M., & Steinbauer, G. (2015). Evaluating the impact of educational robotics on pupils’ technical- and social-skills and science related attitudes. Robotics and Autonomous SySTEMs, 75, 679-685.
Kandlhofer, M., & Steinbauer, G. (2015). Evaluating the impact of educational robotics on pupils’ technical- and social-skills and science related attitudes. Robotics and Autonomous SySTEMs, 75, 679-685.
Kuh, G. D. (2003). What we're learning about student engagement from NSSE:
Benchmarks for effective educational practices. Change, 35(2), 24-32.
Kuh, G. D. (2009). What student affairs professionals need to know about student
engagement. Journal of College Student Development, 50(6), 683-706.
Lange, C., Costley, J., & Han, S. L. (2016). Informal cooperative learning in small groups: The effect of scaffolding on participation. Issues in Educational Research, 26(2), 260-280.
Larkin, M. J. (2001). Providing support for student independence through scaffolded instruction. Teaching Exceptional Children, 34,30-36.
Lathifah A., Budiyanto C., Yuana.,RA (2019).The contribution of robotics
education in primary schools: Teaching and learning.AIP Conference Proceedings , 2194 , 020053.
Lee, H. S., & Songer, N. B. (2004). Longitudinal knowledge development: Scaffolds for Inquiry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.
Lee, O., & Anderson, C. W. (1993). Task engagement and conceptual change in middle school science classroom. American Education Research Journal, 30(3), 585-610.
Leidinger, M. & Perels, F. (2012). Training Self-Regulated Learning in the Classroom: Development and Evaluation of Learning Materials to Train Self-Regulated Learning during Regular Mathematics Lessons at Primary School.Education Research International, 20.
Linder, S. P. Nestrick, B. E.,Mulders, S.,Lavelle, C.L.(2001).Facilitating active learning With inexpensive mobile robots.Journal of Computing Sciences in Colleges, 16(4),21-33.
Lye, S. Y., & Koh, J. H. L. (2014). Review on Teaching and Learning of Computational Thinking through Programming: What is Next for K-12?. Computers in Human Behavior, 41, 51-61.
Marks, H. M. (2000). Student engagement in instructional activity: Patterns in the
elementary, middle, and high school. American Educational Research Journal, 37,
153-184.
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Learning Sciences, 15(2), 153-191.
Meyer, D. K. & Turner, J. C. (2002). Discovering emotion in classroom research.
Educational Psychologist, 37, 107-114.
Miserandino, M. (1996). Children who do well in school: Individual differences
in perceived competence and autonomy in above-average children. Journal
of Educational Psychology, 88(2), 203.
Mouratidis, A., Vansteenkiste, M., Lens, W., & Sideridis, G. (2008). The motivating role of positive feedback in sport and physical education: Evidence for a motivational model. Journal of Sport & Exercise Psychology, 30(2), 240-268.
Newmann, F. M., Wehlage, G. G., & Lamborn, S. D. (1992). The significant and sources of student engagement. In F. M. Newmann (Ed.), Student engagement and
achievement in American secondary school (pp. 11-39). New York: Teachers College Press.
Newmann, F. M., Wehlage, G. G., & Lamborn, S. D. (1992). The significant and sources of student engagement. In F. M. Newmann (Ed.), Student engagement and
achievement in American secondary school (pp. 11-39). New York: Teachers College Press.
Palincsar, A. S. (1998). Keeping the metaphor of scaffolding fresh-A response to C. Addison Stone's "The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, 370-373.
Papert, S., & Harel, I. (1993). Constructionism. Norwood, NJ: Ablex Publishing Corporation.
Paris, C., Colineau, N., Lu, S., & Vander Linden, K. (2005). Automatically generating effective online help. International Journal on Elearning, 4(1), 83-103.
Pearson, P. D., & Gallagher, M. C. (1983). The instruction of reading comprehension. Contemporary Educational Psychology, 8, 317-344.
Petonito,G.(1991).Fostering peer learning in the college classroom. Teaching Sociology,19(4),498-501.
Petty, J., (2013) Interactive, technology-enhanced self-regulated learning tools in healthcare education: A literature review. Nurse Education Today,
33(1), 53-59.
Piaget, J. (1980). Afterthoughts. In M. Piatelli-Palmarini (Ed.), Language and learn-ing: The debate between Jean Piaget and Noam Chomsky (pp. 278-284).Cambridge, MA: Harvard University Press.
Puntambekar, S., & Kolodner, J. L. (1998). Distributed scaffolding: Helping students learn in alearning by design environment. In A. S. Bruckman, M. Guzdial, J. L. Kolodner, & A.Ram (Eds.), ICLS 1998, Proceedings of the international conference of the learning sciences (pp. 35-41). Charlottesville, VA: AACE
Reeve, J. (2013). How students create motivationally supportive learning environments for themselves: The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579-595.
Roehler, L.R., & Cantlon, D.J. (1997) Scaffolding: a powerful tool in social constructivist classrooms. In K. Hogan & M. Pressley (Eds.), Scaffolding student learning (pp. 6-42). Cambridge, MA: Brookline Books.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in sociocultural activity. New York: Oxford University Press.
Rojas ‐ Drummond, S., Mazón, N., Littleton, K., & Vélez, M. (2014). Developing reading comprehension through collaborative learning. Journal of Research in Reading, 37(2), 138-158.
Ryan, A. M., & Patrick, H. (2001). The classroom social environment and change in adolescents’ motivation and engagement during middle school. American Education Research Journal, 38(2), 437-460.
S. Hertel and Y. Karlen. (2021) British Journal of Educational Psychology, 91 (3), 972-996.
Sargent, R., Resnick, M., Martin, F., & Silverman, B. (1996). Building and learning with programmable brick. Constructionism in Practice
(161-173). Mahwah, NJ: Lawrence Erlbaum Associates.
Sirin, S., & Jackson, L. R. (2001). Examining school engagement of Africa American adolescents. Retrieved from ERIC database (ED454 318).
Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effect of teacher behavior and student engagement across the school year. Journal of Educational Psychology, 85, 571-581.
Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A Motivational Perspective on Engagement and Disaffection: Conceptualization and Assessment of Children’s Behavioral and Emotional Participation in Academic Activities in the Classroom. Educational and Psychological Measurement, 69, 493-525.
Sklar,E., Parsons,S., Azhar,M.Q., & Andrewlevich,V.(2006). Educational robotics in Brooklyn (short version), in Proc. the AAAI Mobile Robot Workshop.
Smit, J., van Eerde, H. A. A., & Bakker, A. (2013). A conceptualisation of whole-class scaffolding. British Educational Research Journal, 39(5), 817-834. doi: 10.1002/berj.3007
Stergiopoulou, M., Karatrantou, A., Panagiotakopoulos, C.(2016). Educational robotics and STEM education in primary education: a pilot study using the H&S electronic sySTEMs platform. In: International Conference EduRobotics, 88-103.
Stone, C. A. (1998). The metaphor of scaffolding: its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, 344-364
Strnad, B. (2018). Introduction to the World of Algorithmic Thinking. Journal of Electrical Engineering, 6, 57-60.
Taylor, K. (2016). Collaborative robotics, more than just working in groups: effects of student collaboration on learning motivation, collaborative problem solving, and science process skills in robotic activities. (Doctoral dissertation). Retrieved March 20, 2019 from https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=2179&context=td.
Tekkol, İ. A., & Demirel, M. (2018). An investigation of self-directed learning skills of undergraduate students. Frontiers in psychology, 9, 2324.
Van de Pol, J., Volman, M., & Beishuizen, J. (2010) Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22, 271-296.
Wang, M.C., & Peverly, S.T. (1986). The self-instructive process in learning contexts. Contemporary Educational Psychology, 11, 370-404.
Wood, Bruner, & Ross,(1976). The role of tutoring in problem solving. Journal of
Child Psychology and Psychiatry, 7, pp.89-100.
World Economic Forum (2020). Schools of the Future: Defining New Models of Education for the Fourth Industrial Revolution. Receive from https://www.weforum.org/reports/schools-of-the-future-defining-newmodels-of-education-for-the-fourth-industrial-revolution
Xia, Y., & LeTendre, G. (2021). Robots for future classrooms: A cross-cultural validation study of "Negative Attitudes Toward Robots Scale" in the US context. International Journal of Social Robotics, 13, 703–714.
Yánez-Aldecoa, C., Okada, A., Palau, R. (2015). New learning scenarios for the 21st century related to Education, Culture and Techonology, Revista de universidady sociedad del conocimiento, 12(2), 87-102.
Yildiz, T., & SEFEROĞLU, S. S. (2021). The effect of robotic programming on coding attitude and computational thinking skills toward self-efficacy perception. Journal of Learning and Teaching in Digital Age, 6(2),101-116.
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2). 64-70.
Zimmerman, B.J. and Schunk, D.H. (2001) Self-Regulated Learning and Academic Achievement: Theoretical Perspectives. Lawrence Erlbaum Associates, Mahwah.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊