跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡美慧
研究生(外文):Tiffany Gavrila
論文名稱:利用不同綠色環保萃取法萃取甜菊醣苷及其特性
論文名稱(外文):Extraction and characterization of steviol glycosides using different green extraction methods
指導教授:蔡敏郎蔡敏郎引用關係
指導教授(外文):TSAI MIN-LANG
口試委員:董崇民劉昭麟蔡敏郎劉修銘
口試委員(外文):DON, TRONG-MINGLIU, CHAO-LINTSAI, MIN-LANGLIU, HSIU-MING
口試日期:2023-07-12
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:73
中文關鍵詞:甜菊醣苷萃取冷凍解凍循環氣爆膨發
外文關鍵詞:stevia leafsteviol glycosidefreeze-thaw cycleexplosive puffing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
甜葉菊(Stevia rebaudiana),又稱為甜菊,含有7種以上的甜菊醣苷(Steviol glycosides, SG),主要甜菊醣苷有甜菊苷(Stevioside, Stv)、紅蔘皂苷(Rubusoside, R)、甜菊醇二苷(Steviolbioside, Stb)、杜克苷A (Dulcoside A, DuA)、瑞鮑迪苷A (Rebaudioside A, RA)、瑞鮑迪苷B (Rebaudioside B, RB)、瑞鮑迪苷C (Rebaudioside C, RC)。甜菊含有Stv和RA,使其甜度相當於蔗糖的250-300倍。SG是一種安全性高且穩定性良好的新型天然甜味劑,具有多種功能特性,例如抗高血糖和抗高血壓,因此被廣泛應用於食品、飲料和藥物中,作為蔗糖的替代品。本研究以一般加熱水萃取甜菊葉中的SG,利用不同固液比、萃取溫度和時間求出其最適條件後,進行環保綠色萃取法如超音波和微波輔助萃取法及氣爆膨發和凍融循環預處理,以增加萃取效果。結果顯示,熱水萃取之甜菊醣苷經過純化後的HPLC圖譜的波峰沒辦法對到標準品。一般加熱水萃取之最佳萃取條件為固液比1:20 g:mL、萃取溫度50 ºC及萃取時間60 min。經膨發後之最佳條件為EP2,可以萃取212.17 mg/g的RA。經一次冷凍解凍後可以提高RA含量至286.52 mg/g並高於一般加熱水萃取30 min。經20 kHz的超音波輔助處理可以有效的縮短萃取時間至30 min,其RA含量提升至250.45 mg/g。最後,經微波輔助萃取40 s後可以萃取最高RA,其含量為297.97 mg/g。經過這些物理性處理作用後,植物細胞表面破裂並形成多孔化之結構,促進化合物擴散到溶劑使萃取率提高。總結以上,使用冷凍解凍預處理可以提高萃取率;另外超音波、微波萃取也可以有效的縮短萃取時間,使萃取率高於一般加熱水萃取或相近。
Stevia rebaudiana, also known as sweet leaf, contains more than seven types of steviol glycosides, the main steviol glycosides are stevioside (Stv), rubusoside (R), steviolbioside (Stb), Dulcoside A (DuA), Rebaudioside A (RA), Rebaudioside B (RB), and Rebaudioside C (RC). Stevia contains both Stv and RA, which make it 250-300 times sweeter than glucose. Steviol glycosides are new natural sweetener with high safety and good stability, and has various functional properties, such as anti-hyperglycemic and anti-hypertensive, so it is widely used as a sugar substitute in food, beverage, and medicine. This study uses conventional hot water extraction to extract SG from stevia leaves and investigate the optimum extraction conditions by using different solid-liquid ratios, extraction temperature and extraction time. It is then combined with environmentally friendly green extraction methods such as ultrasonic-assisted, microwave-assisted extraction, explosive puffing and freeze-thaw pretreatment were carried out to increase the extraction efficiency. The results showed that the HPLC graph of the steviol glycosides obtained after conventional hot water extraction and purification could not be aligned with the peak of steviol glycoside standards. The best extraction conditions for conventional hot water extraction were solid-liquid ratio 1:20 g:mL, extraction temperature 50 ºC and extraction time 60 min. The explosive puffed stevia leaves with water content twice to that of sample (EP2) can extract 212.17 mg/g RA from the stevia leaves. The concentration of RA can be increased to 286.52 mg/g after undergoing one freeze-thaw cycles. Using 20 kHz ultrasound-assisted treatment can effectively shortened the extraction time to 30 min, and the concentration of RA increased to 250.45 mg/g. Lastly, the highest RA concentration could be extracted after undergoing microwave-assisted extraction for 40 s, and its concentration was 297.97 mg/g. After undergoing these physical treatments, the surface membrane of plant cells breaks, ruptures, and forms a porous structure, which promotes the diffusion of compounds into the solvent and improves the extraction rate. To sum up the above, the pretreatment of freeze-thaw cycle can increase extraction rate, while the use of ultrasonic and microwave extraction can effectively shorten the extraction time and has higher extraction rate than the general heating water extraction.
目錄

摘要 ii
Abstract i
目錄 ii
圖目錄 vi
表目錄 viii
第一章、前言 1
第二章、文獻回顧 3
2.1. 甜菊簡介 3
2.1.1. 甜菊植物 3
2.1.2. 甜菊之發展 3
2.1.3. 甜菊組成分 4
2.2. 甜菊醣苷 4
2.2.1. 甜菊醣苷的結構 4
2.2.2. 甜菊醣苷之特性及應用 5
2.3. 多孔化預處理 6
2.3.1. 氣爆膨發 6
2.3.2. 冷凍解凍循環法 6
2.4. 甜菊醣苷之萃取法 6
2.4.1. 傳統熱水萃取 6
2.4.2. 微波萃取 7
2.4.3. 超音波萃取 8
第三章、實驗架構 12
第四章、實驗材料 13
4.1. 實驗原料 13
4.2. 實驗藥品 13
4.3. 實驗器材 14
第五章、實驗方法 16
5.1. 原料之前處理 16
5.2. 純化 16
5.2.1 純化萃取液之方法 16
5.2.2 純化萃取液經過不同處理方法 16
5.2.2.1 溶於不同溶劑 16
5.2.2.2 在不同溫度和時間溶解 16
5.3. 甜菊萃取 16
5.3.1. 傳統熱水萃取 16
5.3.1.1 篩選萃取條件 17
5.3.2. 超音波萃取 17
5.3.3. 微波萃取 17
5.3.4. 甜菊醣苷之萃取率 17
5.4. 多孔化預處理 18
5.4.1. 氣爆膨發法 18
5.4.2. 冷凍解凍循環法 18
5.5. 甜菊分析 18
5.5.1. 掃描式電子顯微鏡(SEM) 18
5.5.2. 色差分析 19
5.6. 甜菊醣苷濃度之測定 19
5.6.1. HPLC的應用 19
5.6.2. 移動相之配製 19
5.6.3. HPLC 方法 20
5.6.4. 甜菊醣苷濃度的測定 20
5.6.5. 凍乾萃取物的甜菊醣苷濃度 20
5.6.6. 甜菊葉RA和Stv的濃度 20
5.6.7. 甜菊葉的總甜菊醣苷濃度 21
5.7. 統計分析 21
第六章、結果與討論 22
6.1. 甜菊醣苷分析方法 22
6.1.1. HPLC 方法 22
6.1.2. 純化萃取液 22
6.1.3. 未純化和純化後的萃取液對HPLC圖譜之影響 22
6.1.4. 甜菊醣苷粉溶於不同溶劑 23
6.1.5. 甜菊醣苷粉溶於不同溫度 23
6.1.6. 甜菊醣苷新分析方法 23
6.2. 甜菊粉水萃取之最佳條件 24
6.2.1. 不同萃取溫度 24
6.2.2. 不同萃取時間 24
6.2.3. 不同萃取固液比 25
6.3. 甜菊粉多孔化之預處理 25
6.3.1. 氣爆膨發 25
6.3.1.1. 顔色變化 25
6.3.1.2. 微觀結構(SEM)分析 25
6.3.1.3. 產率及萃取率 26
6.3.2. 冷凍解凍循環 26
6.3.2.1. 微觀結構(SEM)分析 26
6.3.2.2. 產率及萃取率 27
6.4. 不同萃取方法 27
6.4.1. 微波萃取 27
6.4.1.1 微觀結構(SEM)分析 27
6.4.1.2 產率及萃取率 27
6.4.2. 超音波萃取 28
6.4.2.1. 微觀結構(SEM)分析 28
6.4.2.2. 產率及萃取率 28
第七章、 結論 29
第八章、參考文獻 30
第九章、圖 37
第十章、表 57
第八章、參考文獻
禹晓、杨媚、翟娅菲、相启森、申瑞玲、黄凤洪、邓乾春,2018。甜菊糖苷在我国保健食品中的应用现状分析及思考,食品研究与开发,39(7), 215-220.
Abou-Arab, A. E., Abou-Arab, A. A., & Abu-Salem, M. F. (2010). Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebaudiana Bertoni plant. African Journal of Food Science, 4(5), 269-281.
Ahmad, J., Khan, I., Blundell, R., Azzopardi, J., & Mahomoodally, M. F. (2020). Stevia rebaudiana Bertoni.: An updated review of its health benefits, industrial applications and safety. Trends in Food Science & Technology, 100, 177-189.
Alupului, A., & Lavric, V. (2009). Extraction intensification using ultrasounds case study: Glycosides from Stevia rebaudiana Bert. Revista de Chimie, 60(5), 497-500.
Alupului, A., Calinescu, I., & Lavric, V. (2012). Microwave extraction of active principles from medicinal plants. UPB Science Bulletin, Series B, 74(2), 129-142.
Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Comprehensive Reviews in Food Science and Food Safety, 16: 295–315.
Améglio, T., Bodet, C., Lacointe, A., & Cochard, H. (2002). Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiology, 22(17), 1211-1220.
Andreu, V., & Picó, Y. (2019). Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trends in Analytical Chemistry, 118, 709-721.
Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., & Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55(1), 37-43.
Ashwell, M. (2015). Stevia, nature’s zero-calorie sustainable sweetener: A new player in the fight against obesity. Nutrition Today, 50(3), 129-134.
Authority, E. F. S. (2011). Revised exposure assessment for steviol glycosides for the proposed uses as a food additive. EFSA Journal, 9(1), 1972.
Chang, S. M., Chang, T. L., & Yang, C. C. (1996). Explosion-puffing effect on rough rice properties. Bulletin of Insititute of Chemistry Academia Sinica, (43), 77-88.
Chang, F. S., Chin, H. Y., & Tsai, M. L. (2018). Preparation of chitin with puffing pretreatment. Research on Chemical Intermediates, 44, 4939-4955.
Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121(1), 41-54.
Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560.
Chen, S. K., Goh, W. N., Tsai, M. L., Wang, S. T., & Wu, J. Y. (2023)Novel applications of puffing gun in foods. Journal of the Fisheries Society of Taiwan, 49(2) , 59-69.
Cho, S. M., Kim, S., Kim, W. J., Suh, H. J., & Hong, K. B. (2021). The effect of explosive puffing process after fermentation on ginsenosides conversion. Process Biochemistry, 111(2), 21–26.
Choi, Y., Ban, I., Lee, H., Baik, M. Y., & Kim, W. (2019). Puffing as a novel process to enhance the antioxidant and anti-inflammatory properties of Curcuma longa l. (turmeric). Antioxidants, 8(11), 2–4.
Ciriminna, R., Meneguzzo, F., Pecoraino, M., & Pagliaro, M. (2019). A bioeconomy perspective for natural sweetener Stevia. Biofuels, Bioproducts and Biorefining, 13(3), 445-452.
Covarrubias-Cárdenas, A. G., Martínez-Castillo, J. I., Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., García-Cruz, N. U., & Pacheco, N. (2018). Antioxidant capacity and UPLC-PDA ESI-MS phenolic profile of Stevia rebaudiana dry powder extracts obtained by ultrasound assisted extraction. Agronomy, 8(9), 170.
Das, A., Golder, A. K., & Das, C. (2015). Enhanced extraction of rebaudioside-A: experimental, response surface optimization and prediction using artificial neural network. Industrial Crops and Products, 65, 415-421.
de Oliveira, B. H., Packer, J. F., Chimelli, M., & de Jesus, D. A. (2007). Enzymatic modification of stevioside by cell-free extract of Gibberella fujikuroi. Journal of Biotechnology,131(1), 92-96.
Easmin, M. S., Sarker, M. Z. I., Ferdosh, S., Shamsudin, S. H., Yunus, K. B., Uddin, M. S., Sarker, M.M.R., Akanda, M.J.H., Hossain, M.S., & Khalil, H. A. (2015). Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. Journal of Chemical Technology & Biotechnology, 90(6), 981-991.
Gallo, M., Formato, A., Formato, G., & Naviglio, D. (2018). Comparison between two solid-liquid extraction methods for the recovery of steviol glycosides from dried stevia leaves applying a numerical approach. Processes, 6(8), 105.
Gardana, C., & Simonetti, P. (2018). Determination of steviol glycosides in commercial extracts of Stevia rebaudiana and sweeteners by ultra-high performance liquid chromatography Orbitrap mass spectrometry. Journal of Chromatography A, 1578, 8-14.
Gasmalla, M. A. A., Yang, R., & Hua, X. (2015). Extraction of rebaudioside-A by sonication from Stevia rebaudiana Bertoni leaf and decolorization of the extract by polymers. Journal of Food Science and Technology, 52, 5946-5953.
Gasmalla, M. A. A., Yang, R., Musa, A., Hua, X., & Ye, F. (2017). Influence of sonication process parameters to the state of liquid concentration of extracted rebaudioside A from Stevia (Stevia rebaudiana bertoni) leaves. Arabian Journal of Chemistry, 10(5), 726-731.
Geuns, J. M. C. (1998). Stevia rebaudiana Bertoni plants and dried leaves as novel food. Final Version, 21, 1998.
Geuns, J. M. (2003). Stevioside. Phytochemistry, 64(5), 913-921.
Gong, Z., Chen, W., Bao, G., Sun, J., Ding, X., & Fan, C. (2020). Physiological response of Secale cereale L. seedlings under freezing-thawing and alkaline salt stress. Environmental Science and Pollution Research, 27(2), 1499-1507.
Goyal, S. K., Samsher, & Goyal, R. K. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition, 61(1), 1-10.
Görgüç, A., Gençdağ, E., & Yılmaz, F. M. (2019). Optimization of microwave assisted enzymatic extraction of steviol glycosides and phenolic compounds from Stevia leaf. Acta Periodica Technologica, (50), 69-76.
Hartel, R. W. (2001). Crystallization in foods: Aspen Publishers. Gaithersburg, Maryland, USA.
Jaitak, V., Bandna, B. S., & Kaul, Y. V. (2009). An efficient microwave‐assisted extraction process of stevioside and rebaudioside‐A from Stevia rebaudiana (Bertoni). Phytochemical Analysis, 20(3), 240-245.
Javad, S., Naz, S., Ilyas, S., Tariq, A., & Aslam, F. (2014). Optimization of the microwave assisted extraction and its comparison with different conventional extraction methods for isolation of stevioside from Stevia rebaudiana. Asian Journal of Chemistry, 26(23), 8043-8048.
JECFA. (2008). Matters of interest arising from FAO and WHO and from the 68th meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Joint FAO/WHO Food Standards Programme Codex Committee on Food Additives. Fortieth Session. Beijing.
JECFA (2009). Safety evaluation of certain food additives. Prepared by the 69th meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series, 66, 183-220.
Kennelly, E.J. (2001) Sweet and Non-Sweet Constituents of Stevia rebaudiana. In: Kinghorn, A.D., Ed., Stevia. The Genus Stevia, Taylor and Francis, London, 68-85.
Khiraoui, A., Bakha, M., Boulli, A., Hasib, A., & Al Faiz, C. (2021). The productivity of Stevia rebaudiana (Bertoni) on dry leaves and steviol glycosides of four varieties grown in six regions of Morocco. Biocatalysis and Agricultural Biotechnology, 37, 102151.
Kim, S., Jo, K., Byun, B. S., Han, S. H., Yu, K. W., Suh, H. J., & Hong, K. B. (2020). Chemical and biological properties of puffed Dendrobium officinale extracts: Evaluation of antioxidant and anti-fatigue activities. Journal of Functional Foods, 73, 104-114.
Kroyer, G. (2010). Stevioside and Stevia-sweetener in food: application, stability and interaction with food ingredients. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5(2), 225-229.
Kujundžic, D., Jambrak, A. R., Vukušic, T., Stulic, V., Kljusuric, J. G., Banovic, M., & Herceg, Z. (2017). Near-infrared spectroscopic characterization of steviol glycosides extracted from Stevia rebaudiana Bertoni using high-power ultrasound and gas-phase plasma. Journal of Food & Nutrition Research, 56(2).
Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121-1132.
Li, H., Chen, B., & Yao, S. (2005). Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmodies Oliv.(E. ulmodies). Ultrasonics Sonochemistry, 12(4), 295-300.
Lima, M. T., Baillon, F., Espitalier, F., Hastoy, C., & Boutié, P. (2021). Ultrasound-assisted extraction process of glycosides from Stevia Rebaudiana Bertoni leaves. Chemical Engineering Transactions, 86, 1459-1464.
Liu, J., Li, J. W., & Tang, J. (2010). Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food and Bioproducts Processing, 88(2-3), 215-221.
Markets and markets. (2022). Stevia market size, share, trends, by type (powder, liquid and leaf), by form (dry and liquid), by application (dairy , bakery & confectionery, tabletop sweeteners, food & beverages, convenience food, others) and by region forecast to 2030. [2022-04-29]. https://www.reportsanddata.com/report-detail/stevia-market/research-methodology.
Mi, F. L., Sung, H. W., & Shyu, S. S. (2002). Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydrate Polymers, 48(1), 61-72.
Milani, G., Vian, M., Cavalluzzi, M. M., Franchini, C., Corbo, F., Lentini, G., & Chemat, F. (2020). Ultrasound and deep eutectic solvents: An efficient combination to tune the mechanism of steviol glycosides extraction. Ultrasonics Sonochemistry, 69, 105255.
Muanda, F. N., Soulimani, R., Diop, B., & Dicko, A. (2011). Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT-Food Science and Technology, 44(9), 1865-1872.
Muthusamy, K., & Munaim, M. S. A. (2019). Determination of factors affecting extraction of rebaudioside A & stevioside from stevia leaves. International Journal of Engineering Technology and Sciences, 6(1), 120-130.
Nabors L. O. B. (2001). Stevioside. Kinghorn, A. D., Wu, C. D., Soejarto, D. D., & Compadre, C. M (Eds.), Alternative Sweeteners (pp. 167-184). New York: Marcel Dekker Inc.
Nesvadba, P. (2008). Thermal properties and ice crystal development in frozen foods. Frozen Food Science and Technology, 1. (pp. 1-25). In Evans, J.A. Blackwell Publishing, Oxford, UK.
Paul Chambost, 2017, Chaque Marocain consomme 36 kilos de sucre par an, from: http://telquel.ma/2014/09/20/chauqe-marocain-consomme-36-kilos-sucre-par-an_1416482
Periche, A., Castelló, M. L., Heredia, A., & Escriche, I. (2015). Influence of extraction methods on the yield of steviol glycosides and antioxidants in Stevia rebaudiana extracts. Plant Foods for Human Nutrition, 70(2), 119-127.
Plaza, M., & Turner, C. (2017). Pressurized hot water extraction of bioactives. Comprehensive Analytical Chemistry, 76, 53-82.
Prakash, I., Dubois, G. E., Clos, J. F., Wilkens, K. L., & Fosdick, L. E. (2008). Development of rebiana, a natural, non-caloric sweetener. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 46 Supplementary 7, S75–S82.
Priyanka, G. (2013). Plant tissue culture of Stevia rebaudiana (Bertoni): A review. Journal of Pharmacognosy and Phytotherapy, 5(2), 26-33.
Purkayastha, S., & Kwok, D. (2020). Metabolic fate in adult and pediatric population of steviol glycosides produced from stevia leaf extract by different production technologies. Regulatory Toxicology and Pharmacology, 116, 104727.
Raspe, D. T., Ciotta, S. R., Zorzenon, M. R. T., Dacome, A. S., da Silva, C., Milani, P. G., & da Costa, S. C. (2021). Ultrasound-assisted extraction of compounds from Stevia leaf pretreated with ethanol. Industrial Crops and Products, 172, 114035.
Reis, R. V., Chierrito, T. P., Silva, T. F., Albiero, A. L., Souza, L. A., Gonçalves, J. E., Oliveira, A.J., & Gonçalves, R. A. (2017). Morpho-anatomical study of Stevia rebaudiana roots grown in vitro and in vivo. Revista Brasileira de Farmacognosia, 27, 34-39.
Rivera-Avilez, J. A., Jarma-Orozco, A., & Pompelli, M. F. (2021). Stevia rebaudiana Bertoni: The interaction of night interruption on gas exchange, flowering delay, and steviol glycosides synthesis. Horticulturae, 7(12), 543.
Rodrigues, G. D. M., Mello, B. T. F. D., dos Santos Garcia, V. A., & Silva, C. D. (2017). Ultrasound‐assisted extraction of oil from macauba pulp using alcoholic solvents. Journal of Food Process Engineering, 40(5), e12530.
Rombaut, N., Tixier, A. S., Bily, A., & Chemat, F. (2014). Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioproducts and Biorefining, 8(4), 530-544.
Rouhani, M. (2019). Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia Rebaudiana. Industrial Crops and Products, 132, 226-235.
Saniah, K., & Samsiah, M. S. (2012). The application of Stevia as sugar substitute in carbonated drinks using response surface methodology. Journal of Tropical Agriculture and Food Science, 40(1), 23-34.
Savita, S. M., Sheela, K., Sunanda, S., Shankar, A. G., & Ramakrishna, P. (2004). Stevia rebaudiana–A functional component for food industry. Journal of Human Ecology, 15(4), 261-264.
Smith, R. M. (2002). Extractions with superheated water. Journal of Chromatography A, 975(1), 31-46.
Sperry, J. S., & Sullivan, J. E. (1992). Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 100(2), 605-613.
Stramarkou, M., Oikonomopoulou, V., Karagianni, E., Stamatis, C., Nana, K., Krystalli, E., Komaitis. S., & Krokida, M. (2021). Optimization of green extraction methods for the recovery of stevia glycosides. Chemical Engineering Transactions, 87, 43-48.
Tan, T. S., Chin, H. Y. Tsai, M. L. & Liu, C. L. (2015). Structural alterations, pore generation, and deacetylation of α–and β–chitin by instant catapult steam explosion. Carbohydrate Polymers, 200, 255-261.
Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2009). Validation of green‐solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. Journal of Separation Science, 32(4), 613-622.
Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484-2494.
Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Science & Emerging Technologies, 9(2), 161-169.
Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178.
Wang, J. X., Xiao, X. H., & Li, G. K. (2008). Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. Journal of Chromatography A, 1198, 45-53.
Wölwer-Rieck, U. (2012). The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. Journal of Agricultural and Food Chemistry, 60(4), 886-895.
Yadav, A. K., Singh, S., Dhyani, D., & Ahuja, P. S. (2011). A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Canadian Journal of Plant Science, 91(1), 1-27.
Yen, M. T., & Mau, J. L. (2007). Physico-chemical characterization of fungal chitosan from Shiitake stipes. LWT-Food Science and Technology, 40(3), 472-479.
Yildiz-Ozturk, E., Nalbantsoy, A., Tag, O., & Yesil-Celiktas, O. (2015). A comparative study on extraction processes of Stevia rebaudiana leaves with emphasis on antioxidant, cytotoxic and nitric oxide inhibition activities. Industrial Crops and Products, 77, 961-971.
Yılmaz, F. M., Görgüç, A., Karaaslan, M., Vardin, H., Ersus Bilek, S., Uygun, Ö., & Bircan, C. (2019). Sour cherry by-products: Compositions, functional properties and recovery potentials–a review. Critical Reviews in Food Science and Nutrition, 59(22), 3549-3563.
Yılmaz, F. M., Görgüç, A., Uygun, Ö., & Bircan, C. (2020). Steviol glycosides and polyphenols extraction from Stevia rebaudiana Bertoni leaves using maceration, microwave-, and ultrasound-assisted techniques. Separation Science and Technology, 56(5), 936-948.
Zhang, L., Cheng, Z., Zhao, Q., & Wang, M. (2017). Green and efficient PEG-based ultrasound-assisted extraction of polysaccharides from superfine ground lotus plumule to investigate their antioxidant activities. Industrial Crops and Products, 109, 320-326.
Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13, 20.
Zhang, W. N., Zhang, H. L., Lu, C. Q., Luo, J. P., & Zha, X. Q. (2016). A new kinetic model of ultrasound-assisted extraction of polysaccharides from Chinese chive. Food Chemistry, 212, 274-281.
Žlabur, J. Š., Voća, S., Dobričević, N., Brnčić, M., Dujmić, F., & Brnčić, S. R. (2015). Optimization of ultrasound assisted extraction of functional ingredients from Stevia rebaudiana Bertoni leaves. International Agrophysics, 29(2), 231-237.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top