|
References [1]T. Jia, Z. Kapelan, R. de Vries, P. Vriend, E. C. Peereboom, I. Okkerman, R. Taormina, “Deep learning for detecting macroplastic litter in water bodies: A review,” Proceedings of IEEE International Conference on Applied System Innovation, 2021. [2]P. F. Proença and P. Simões, “TACO: Trash Annotations in Context for Litter Detection,” Mar.2020, [Online]. Available: http://arxiv.org/abs/2003.06975. [3]“pedropro/TACO: Trash Annotations in Context Dataset Toolkit.” Access date: Feb. 2022, [Online]. Available: https://github.com/pedropro/TACO. [4]“YOLOv4 Industrial Application Experience - Zhang Jiaming,” Access date: Apr. 2022, [Online]. Available: https://aiacademy.tw/yolo-v4-intro/. [5]C.Y. Wang and H. Y. M. Liao, “Scaled-YOLOv4: Scaling Cross Stage Partial Network,” arXiv preprint arXiv:2011.08036, 2020. [6]S. Merlino, M. Paterni, A. Berton, and L. Massetti, “Unmanned Aerial Vehicles for Debris Survey in Coastal Areas: Long-Term Monitoring Programme to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine Litter,” Remote Sensing 12, no. 8: 1260. https://doi.org/10.3390/rs12081260. [7]E. S. Gabriela, H. Mirco, O. Natascha, and S. Gerald., “Efficiency of Aerial Drones for Macrolitter Monitoring on Baltic Sea Beaches,” Frontiers in Environmental Science, vol. 8, 2021, doi: 10.3389/fenvs.2020.560237. [8]M. Tharani, A. W. Amin, M. Maaz, and, M.Taj, “Attention Neural Network for Trash Detection on Water Channels,” arXiv preprint arXiv:2007.04639, 2020. [9]“What is YOLOv5? A Guide for Beginners.” Access date: Apr. 2022, [Online]. Available: https://blog.roboflow.com/yolov5-improvements-and-evaluation/. [10]S. Xu, Z. Guo, Y. Liu, J. Fan, and X. Liu, “An Improved Lightweight YOLOv5 Model Based on AttentionMechanism for Face Mask Detection,” 11 Sep 2022 [cs.CV]. arXiv:2203.16506v3. [11]“YOLOv7: The Most Powerful Object Detection Algorithm (2023 Guide),” Access date: Jul. 2022, [Online]. Available: https://viso.ai/deep-learning/yolov7-guide/. [12]C.Y.Wang, A.Bochkovskiy, and H-Y.M.Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” 6.Jul.2022, [cs.CV]. arXiv:2207.02696v1. [13]M. Tharani, A. W. Amin, M. Maaz, and M.Taj, “Attention Neural Network for Trash Detection on Water Channels,” arXiv preprint arXiv:2007.04639, 2020.
[14]C. L. Chang, K. Y. Chong, C. F. Chen, J. Y. Lin, and S. F. Kang “Research on pollution source analysis and potential impacts on water quality in the Keelung River, ” Journal of Taiwan Agricultural Engineering, vol. 66, no. 2, Jun. 2022, doi: 10.29974/JTAE.202206_68(2).0002. [15]“DWM-222 4G LTE N150 USB Adapter.” Access date: Feb. 2022, [Online]. Available:https://eu.dlink.com/uk/en/-/media/consumer_products/dwm/dwm-222/datasheet/dwm_222_a2_datasheet_en_eu.pdf. [16]“Holybro Pixhawk 6X” Access date: Jul. 2022, [Online]. Available: https://docs.px4.io/main/en/flight_controller/pixhawk6x.html. [17]“ZED-F9P module.” Access date: Jul. 2022, [Online]. Available: https://www.u-blox.com/en/product/zed-f9p-module. [18]“PID controller - Wikipedia.” Access date: Fed. 2022, [Online]. Available: https://en.wikipedia.org/wiki/PID_controller. [19]“reComputer J2012 - Edge AI Device with Jetson Xavier NX 16 GB module, Aluminium case, pre-installed JetPack System” Access date: Feb. 2022, [Online]. Available: https://www.seeedstudio.com/Jetson-20-1-H2-p-5329.html. [20]“SJCAM SJ5000X specifications.” Access date: Feb. 2022, [Online]. Available: https://www.manua.ls/sjcam/sj5000x/specifications. [21]“Flying Evaluation,” Access date: Apr. 2022, [Online]. Available: https://flyeval.com/paper/. [22]J. R. Terven, and D. M. Cordova-Esparaza, “A Comprehensive Review of YOLO: From YOLOv1 And Beyond,” Under Review in ACM Computing Surveys, arXiv:2304.00501v3 [cs.CV] 9 Jun. 2023, [Online]. Available: https://arxiv.org/pdf/2304.00501. [23]R. Girshick, J. Donahue, T. Darrell, andJ. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Sep. 2014, pp. 580–587. [24]C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A New Backbone that can Enhance Learning Capability of CNN,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020. [25]J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788, Jun.2015. [26]J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017. [27]J.Redmon and A.Farhadi, “YOLOv3: An Incremental Improvement,” Apr.2018, [Online]. Available: http://arxiv.org/abs/1804.02767. [28] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv preprint arXiv:2004.10934, 2020. [29]“Evolution of YOLO family series models: from v1 to v8 (below),” Access date: Apr. 2022, [Online]. Available: https://segmentfault.com/a/1190000043338809. [30]“YOLOv1-v4+PP-YOLO.” Access date: Apr. 2022, [Online]. Available: https://hackmd.io/@ZZ/yolov4-ppyolo. [31]“pytorch-YOLOv4.” Access date: Apr. 2022, [Online]. Available: https://github.com/Tianxiaomo/pytorch-YOLOv4. [32]“ultralytics/yolov5 v6.0_v6.0 - YOLOv5n 'Nano' models, Roboflow integration, TensorFlow export, OpenCV DNN support on GitHub.” Access date: May. 2022, [Online]. Available: https://newreleases.io/project/github/ultralytics/yolov5/release/v6.0. [33]“A complete explanation of the core basic knowledge of Yolov5 in the Yolo series.” Access date: Apr. 2022, [Online]. Available: https://zhuanlan.zhihu.com/p/172121380. [34]“Object Detection using YOLOv5 OpenCV DNN in C++ and Python.” Access date: Apr. 2022, [Online]. Available: https://learnopencv.com/object-detection-using-yolov5-and-opencv-dnn-in-c-and-python/. [35]“ultralytics/yolov5.” Access date: Jun. 2022, [Online]. Available: https://github.com/ultralytics/yolov5. [36]yolov7_custom_data_trainig.” Access date: Jul. 2022, [Online]. Available:https://github.com/akashAD98/yolov7_custom_data_trainig. [37]M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient Object Detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 10778–10787, Nov.2019. [38]S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated Residual Transformations for Deep Neural Networks,” Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Nov. 2017, vol. 2017-January, pp. 5987–5995.
|