跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡盛華
論文名稱:應用資料包絡分析法分析第三方物流公司各站點營運績效-以P公司為例
論文名稱(外文):Technical Efficiency of DEA-Case of P Company
指導教授:蔡豐明蔡豐明引用關係王文弘王文弘引用關係
指導教授(外文):Tsai, Feng-MingStephen W. Wang
口試委員:王中允陳正杰蔡豐明
口試委員(外文):WANG, CHUNG-YUNGChen, Cheng-ChiehTsai, Feng-Ming
口試日期:2023-07-20
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:航運管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:59
中文關鍵詞:效率評估資料包絡分析法營運績效快遞物流業
外文關鍵詞:Efficiency EvaluationData Envelopment AnalysisOperational PerformanceExpress Logistics Industry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於電子商務的崛起和全球化的浪潮,包裹運送已成為了各行業的核心問題。特別是在疫情期間,對快遞物流業的依賴程度更是不斷增加,因此物流服務的要求也隨之變得更為嚴苛,相對應的物流成本也逐漸上升。因此,如何有效提升快遞物流公司的營運績效,已成為了一個至關重要的議題。

研究個案公司之營運站點的管理階層僅了解負責營運站點的營運狀況,例如:進出口包裹數,進出口的總點數,每條路線每小時可以收送幾個點,每條路線的點數是不是滿足一整天的工作量,每條路線在路上處理幾個包裹,加班時數以上眾多的數據,但沒有辦法得知這個營運站點所投入的人力,時數及車輛等是不是有效率的產出。

本研究運用資料包絡分析法(Data Envelopment Analysis,DEA)方法,針對第三方物流公司各營運站點的績效進行評估,以了解各營運站點在資源利用和產出效率上的表現,而快遞物流公司各營運站點之營運績效存在著差異。部分營運站點的營運效率較高,而另部份站點的營運效率較低。透過DEA模型的分析,可以幫助公司找出營運效率較高和營運效率較低的站點,並針對不同的站點提出適當的改進策略及建議,以提升整個公司的營運效率和競爭力。

整體而言,本研究對於快遞物流公司提升營運績效和掌握市場競爭優勢具有重要的參考價值。同時本研究發現個案公司的營運站點部份站點的營運效率開始出現遞減的情況,甚至己經開始遞減,在管理上應針對這些營運站點的投入資源進行全面性的審視,避免進一步擴大同時也能將多餘的資源轉移到有發展性的站點,這樣不僅可以提升被檢討站點的效率同時也可以幫助需要的站點來提升服務逹到雙贏的結果。

未來的研究可進一步探討如何降低物流成本、提高物流服務品質和客戶滿意度等問題,以進一步提升物流公司的營運績效。

In recent years, due to the rise of e-commerce and the wave of globalization, parcel delivery has become a core issue in various industries. Especially during the epidemic period, the dependence on the express logistics industry has continued to increase, so the requirements for logistics services have also become more stringent, and the corresponding logistics costs have gradually increased. Therefore, how to effectively improve the operational performance of express logistics companies has become a crucial issue.

The management of the operating site of the research case company only understands the operating status of the operating site, such as: the number of import and export packages, the total points of import and export, how many points each route can send and receive per hour, and the number of each route Do the points meet the workload of the whole day, how many packages are processed on the road for each route, and the number of overtime hours is more than a lot of data, but there is no way to know the manpower, hours and vehicles invested in this operating site. Not an efficient output.

This study uses the Data Envelopment Analysis (DEA) method to evaluate the performance of each operating site of a third-party logistics company in order to understand the performance of each operating site in terms of resource utilization and output efficiency, while express logistics There are differences in the operating performance of the company's operating sites. Some operating sites have higher operating efficiency, while others have lower operating efficiency. Through the analysis of the DEA model, it can help the company find out the sites with higher and lower operating efficiency, and propose appropriate improvement strategies and suggestions for different sites, so as to enhance the operating efficiency and competitiveness of the entire company.

On the whole, this study has important reference value for express logistics companies to improve their operational performance and grasp their market competitive advantages. At the same time, this study found that the operating efficiency of some of the operating sites of the case company began to decline, and even began to decline. In terms of management, it is necessary to conduct a comprehensive review of the investment resources of these operating sites to avoid further expansion At the same time, it can also transfer excess resources to developing sites, which can not only improve the efficiency of the reviewed sites, but also help the sites in need to improve their services to achieve a win-win result.

Future research can further explore how to reduce logistics costs, improve logistics service quality and customer satisfaction, so as to further improve the operational performance of logistics companies.

謝辭 I
摘要 II
Abstract III
圖目次 VII
表目次 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
1.4 研究範圍與限制 3
第二章 文獻探討 5
2.1 第三方物流服務特性 5
2.2 第三方物流營運站點 9
2.3績效分析 12
2.3.1營運績效定義 12
2.3.2 績效評估的方法 13
2.4 資料包絡分析法於物流業之研究 14
第三章 研究方法 18
3.1 資料包絡分析法 18
3.1.1 CCR模式 19
3.1.2 BCC模式 21
3.1.3 麥氏生產力指數 22
3.2資料包絡分析法限制 24
第四章 實證分析與研究結果 25
4.1 決策資料項目選取 25
4.2 投入與產出變項數之相關數據資料 25
4.3 實證分析 29
4.3.1 CCR模式效率分析 29
4.3.2 BCC模式效率分析 34
4.3.3 規模效率分析 40
第五章 結論與建議 42
5.1 結論 42
5.2 建議 43
參考文獻 44
一、中文文獻 44
二、英文文獻 45

1.方雪齡(2009),「利用資料包絡分析法評估第三方物流中心之經營績效」,元智大學工業工程與管理研究所碩士班學位論文。
2.王俊文(2014),「物流運輸業經營績效之評估」,國立臺灣海洋大學航運管理學系碩士班學位論文。
3.王穆衡(2003),「公路汽車客運業營運虧損補貼計畫之效益分析」,交通部運輸研究所運輸期刊。
4.吳濟華, 何柏正, & 游秉睿. (2008). 我國職棒球隊績效評估與管理改進策略: 二階段 DEA 法之應用. 休閒與遊憩研究, 2(1), 31-69.
5.林才軒 (2018),企業選擇第三方物流業者之關鍵因素。
6.林玉珊(2004),「運輸倉儲業經營績效之評估」,國立高雄第一科技大學/運輸倉儲營運所碩士班學位論文。
7.林佩君(2015),「利用資料包絡分析法評估宅配物流業之經營績效」,東吳大學國際經營與貿易學系碩士班學位論文。
8.林海清 (1994). 高中教師激勵模式與其工作滿意服務士氣教學效能之研究. 台北: 國立政治大學教育研究所博士論文。
9.高強、黃旭男、Toshiyuki Sueyoshi(2003),「管理績效評估-資料包絡分析法」,華泰文化事業股份有限公司。
10.陳佑任(2010),「海運定期航線營運績效之研究」,國立交通大學,管理學院碩士在職專班運輸物流組碩士論文。
11.游知庭(2017),「兩岸物流業上市公司營運績效分析」,國立雲林科技大學財務金融系碩士班學位論文。
12.黃鏡如, 經濟, 傅祖壇, 農業經濟, 黃美瑛, & 經濟. (2008). 績效評估: 效率與生產力之理論與應用. 新陸出版。
13.楊玄 (2012),「資料包絡分析於臺灣渡輪運輸業績效評估之研究」,國立臺灣海洋大學,商船學系所。
14.楊秉勳(2011),「台灣地區各縣市物流倉儲產業營運效率之分析」,樹德科技大學經營管理研究所碩士班學位論文。
15.劉俊銘(1996),「應用多準則決策架構衡量物流配送作業績效」,國立中央大學工業管理學系碩士班學位論文。
16.潘書麟(2006),「台灣物流業營運效率之比較研究」,國立中央大學土木工程研究所碩士班學位論文。
17.蔡宗標(2006), 「兩岸三地航空運輸業效率之研究-資料包絡分析法之應用」,大葉大學國際企業管理學系碩士在職專班學位論文。
18.譚玉順,陳森發(2011),「基於網路DEA 的航空運輸公司績效分析」,東南大學學報,Vol. 41, NO. 5,頁1114-1118。
19.蘇雲一, et al. 資料包絡分析法與比例分析法運用於科技專案效率評估之研究. 1997. PhD Thesis.
20.蘇義雄 (2013),供應鏈管理,台北市:滄海書局

二、英文文獻
1.Banker, R. D., & Morey, R. C. (1986). The use of categorical variables in data envelopment analysis. Management science, 32(12), 1613-1627.
2.Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of operational research, 62(1), 74-84.
3.Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
4.Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
5.Banker, R. D., Cooper, W. W., Seiford, L. M., Thrall, R. M., & Zhu, J. (2004). Returns to scale in different DEA models. European Journal of Operational Research, 154(2), 345-362.
6.Bowersox, Donald John, David J. Closs, and Omar K. Helferich. Logistical management. Vol. 6. New York: McGraw-Hill, 1996.
7.Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414.
8.Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
9.Chien, C. F., Chen, W. C., Lo, F. Y., & Lin, Y. C. (2007). A case study to evaluate the productivity changes of the thermal power plants of the Taiwan power company. IEEE Transactions on Energy Conversion, 22(3),
10.Chien, C. F., Chen, W. C., Lo, F. Y., & Lin, Y. C. (2007). A case study to evaluate the productivity changes of the thermal power plants of the Taiwan power company. IEEE Transactions on Energy Conversion, 22(3), 680-688.
11.Chung, Y.H. Färe, R., and Grosskopf , S. (1995) ,“Productivity and undesirable outputs: A directional distance function approach."Discussion Paper Series No. 95-24.
12.Cooper, James C. "Logistics strategies for global businesses." International journal of physical distribution & logistics management (1993).
13.Cowie, J. (2002). Acquisition, efficiency and scale economies: an analysis of the British bus industry. Transport Reviews, 22(2), 147-157.
14.Coyle, Bardi, and E. J. Bardi. "Langley (1996) The Management of Business Logistics." West Publish Company.
15.Curi, C., Gitto, S., & Mancuso, P. (2010). The Italian airport industry in transition: a performance analysis. Journal of Air Transport Management, 16(4), 218-221.
16.Dapiran, Peter, et al. "Third party logistics services usage by large Australian firms." International Journal of Physical Distribution & Logistics Management (1996).
17.Färe, R., & Grosskopf, S. (1992). Malmquist productivity indexes and Fisher ideal indexes. The Economic Journal, 102(410), 158-160.
18.Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the royal statistical society: series A (General), 120(3), 253-281.
19.Fugate, Brian S., John T. Mentzer, and Theodore P. Stank. "Logistics performance: efficiency, effectiveness, and differentiation." Journal of business logistics 31.1 (2010): 43-62.
20.Hackman, S. T., Frazelle, E. H., Griffin, P. M., Griffin, S. O., & Vlasta, D. A. (2001). Benchmarking warehousing and distribution operations: an input-output approach. Journal of Productivity Analysis, 16, 79-100
21.Hamdan, A., & Rogers, K. J. (2008). Evaluating the efficiency of 3PL logistics operations. International journal of production economics, 113(1), 235-244.
22.Hertz, Susanne, and Monica Alfredsson. "Strategic development of third party logistics providers." Industrial marketing management 32.2 (2003): 139-149.
23.Juga, Jari, Saara Pekkarinen, and Heli Kilpala. "Strategic positioning of logistics service providers." International journal of logistics: Research and Applications 11.6 (2008): 443-455.
24.Lieb, Robert C. "The use of third-party logistics services by large American." Journal of Business logistics 13.2 (1992): 29.
25.Liu, D.(2016). Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: An application of Network Data Envelopment Analysis. Journal of air transport management , 52, 11-22.
26.Lozano, Sebastian, Gutierrez, Ester, and Moreno, Placido (2013),“Network DEA approach to airports performance assessment considering undesirable outputs."Applied Mathematical Modelling, Vol. 37, Issue 4, PP. 1665-1676
27.Lu, Lu, et al. "Work engagement, job satisfaction, and turnover intentions: A comparison between supervisors and line-level employees." International Journal of Contemporary Hospitality Management (2016).
28.Murphy, Paul R., and Richard F. Poist. "Third-party logistics: some user versus provider perspectives." Journal of business Logistics 21.1 (2000): 121.
29.Power, D., Sharafali, M., & Bhakoo, V. (2007). Adding value through outsourcing: Contribution of 3PL services to customer performance. Management research news.
30.Reichmann, G.(2004). Measuring university library efficiency using data envelopment analysis.
31.Richardson, J. David. "Income inequality and trade: how to think, what to conclude." Journal of economic perspectives 9.3 (1995): 33-55.
32.Rosenbek, John C., et al. "A penetration-aspiration scale." Dysphagia 11 (1996): 93-98.
33.Sink, Harry L., C. John Langley Jr, and Brian J. Gibson. "Buyer observations of the US third‐party logistics market." International Journal of Physical Distribution & Logistics Management 26.3(1996): 38-46.
34.Stank, Theodore P., and Arnold B. Maltz. "Some Propositions on Thrid Party Choice: Domestic vs. International Logistics Providers." Journal of Marketing Theory and Practice 4.2 (1996): 45-54.
35.Thakkar, J., Deshmukh, S. G., Gupta, A. D., & Shankar, R. (2007). Development of a balanced scorecard: an integrated approach of interpretive structural modeling (ISM)and analytic network process(ANP). International Journal of Productivity and Performance Management.
36.Tone, K., & Sawada, T.(1990). An efficiency analysis of public vs. private bus transportation enterprises. Operational research, 90, 357-365.
37.Wan, S. P., Wang, F., Lin, L. L., & Dong, J. Y.(2015). An intuitionistic fuzzy linear programming method for logistics outsourcing provider selection. Knowledge-Based Systems, 82, 80-94.
38.Yu, Ming-Miin and Fan, Chih-Ku (2009),“Measuring the performance of multimode bus transit: A mixed structure network DEA model."Transportation Research Part E, Vol. 45, Issue 3, PP.501-515.
39.Zhu, Joe (2011), “Airlines Performance via Two-Stage Network DEA Approach.."journal of CENTURN Cathedra , Vol. 4, Issue 2, PP. 260–269.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊