跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯權峰
研究生(外文):KO, CHUAN-FENG
論文名稱:使用聲納與深度學習技術分析養殖場域容積與魚群分布
論文名稱(外文):Analysis of the Space Volume and Fish Distribution of Fish Farms by Imaging Sonar and Deep Learning Technologies
指導教授:張欽圳
指導教授(外文):CHANG, CHIN-CHUN
口試委員:張欽圳鄭錫齊鄭永斌
口試委員(外文):CHANG, CHIN-CHUNCHENG, SHYI-CHYICHENG, YUNG-PIN
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:65
中文關鍵詞:點雲圖聲納影像語義分割
外文關鍵詞:point cloud imagesonar imagesemantic segmentation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
由於魚群在養殖場域的分布與密度與魚群的健康狀態有關,因此一個可以很容易使用的魚群水下分布與密度的分析系統對養殖業者至關重要。本論文提出一個使用成像聲納與神經網路技術來分析魚群在養殖場域水下分布與密度的系統。本系統透過旋轉聲納探頭掃描箱網內部,來擷取一序列的聲納影像和聲納探頭旋轉角度資訊。接下來,藉由語義分割神經網路在具有時序性的多張聲納影像上,分割出魚群、網袋、海底等。並根據聲納探頭角度資訊,獲得箱網網袋、魚群等物體三維空間點雲資訊。在三維空間點雲資訊的基礎上,分析魚群在養殖場域內水平與深度分布與估計魚群與養殖場域的容積比。藉由本論文所提出的系統的分析結果,養殖業者更能夠掌握魚隻空間分布與密度狀況,做出適當的處理。
Since the distribution and density of fish in the fish farm are related to the health status of fish, an easy-to-use system for analyzing the underwater distribution and density of fish is very important to fish farmers. In this thesis, a system using imaging sonar and neural network technology is proposed for analyzing the underwater distribution and density of fish in net cages. Firstly, the proposed system scans the inside of the net cage by mechanically rotating the transducer of the imaging sonar system and acquires a sequence of sonar images with the rotation information of the transducer. Next, the semantic segmentation neural network is applied to segment the sonar image into the fish school, fish net, seafloor, etc., on a stack of successive sonar images. According to the angle information of the transducer associated with the acquired sonar image, a cloud of three-dimensional (3D) points with semantic labels can be obtained. The horizontal and vertical distributions of fish and the ratio of the volume of the fish school to the capacity of the net cage are analyzed on the 3D point cloud. With the analysis result, fish farmers can better grasp the spatial distribution and density of fish and make appropriate management policies.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
1.4 相關研究 3
1.5 論文貢獻 4
1.6 論文架構 4
第二章 實驗設備與場域介紹 5
2.1 聲納系統 5
2.2 長佈系統設 9
2.2.1 電源的限制 9
2.2.2 自動化啟動/上載/關閉聲納影像擷取 11
2.3 手持式機構 12
2.3.1 手持式機構設計 13
2.3.2 供電與訊號系統 15
2.3.3 聲納探頭掃描方式 15
2.4 實驗場域介紹 21
2.4.1 澎湖海上實驗場域 A 22
2.4.2 澎湖海上實驗場域 B 23
2.4.3 海大水生中心石斑池 24
第三章 養殖場域點雲圖分析 26
3.1 語義切割神經網路 26
3.2 生成點雲圖 28
3.3 魚群分布分析 30
3.3.1 水平分布分析 31
3.3.2 垂直分布分析 32
3.4 容積分析 35
3.4.1 箱網容積分析 35
3.4.2 魚群容積分析 39
第四章 實驗方式與實驗結果 41
4.1 實驗方式 41
4.2 實驗結果 45
4.2.1 驗證神經網路 45
4.2.2 實驗場域分析 48
第五章 結論與未來展望 58
參考文獻 59
[1]吳靜芷, "魚類大量死亡," 行政院農業委員會家畜衛生試驗所水生動物疾病診斷輔助系統, 2008.
[2]王聖銘, "放養密度對老鼠斑稚魚成長與非特異性免疫的影響," 碩士, 水產養殖學系, 國立臺灣海洋大學, 2007.
[3]林元亨, "循環水和流加水系統於不同養殖密度下對斑石鯛幼魚成長與活存之影響," 碩士, 水產養殖學系, 國立臺灣海洋大學, 2021.
[4]J.-E. Juell, "The behaviour of Atlantic salmon in relation to efficient cage-rearing," Reviews in fish biology and fisheries, vol. 5, pp. 320-335, 1995.
[5]李珊銘, "澎湖海鱺箱網養殖漁業建置永續發展指標系統之研究," 碩士, 環境生物與漁業科學學系, 國立臺灣海洋大學, 2006.
[6]F. Oppedal, T. Dempster, and L. H. Stien, "Environmental drivers of Atlantic salmon behaviour in sea-cages: a review," Aquaculture, vol. 311, no. 1-4, pp. 1-18, 2011.
[7]D. Johansson, K. Ruohonen, J.-E. Juell, and F. Oppedal, "Swimming depth and thermal history of individual Atlantic salmon (Salmo salar L.) in production cages under different ambient temperature conditions," Aquaculture, vol. 290, no. 3-4, pp. 296-303, 2009.
[8]D. Johansson, J.-E. Juell, F. Oppedal, J.-E. Stiansen, and K. Ruohonen, "The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behaviour of Atlantic salmon (Salmo salar L.) in production cages," Aquaculture, vol. 265, no. 1-4, pp. 271-287, 2007.
[9]高鈺棻, "氣候變遷對澎湖海鱺箱網養殖產業之影響," 碩士, 水產養殖學系, 國立臺灣海洋大學, 2012.
[10]阮雅莛, "石斑魚行為發燒的研究," 碩士, 水產養殖學系, 國立臺灣海洋大學, 2014.
[11]L. Muñoz, E. Aspillaga, M. Palmer, J. L. Saraiva, and P. Arechavala-Lopez, "Acoustic telemetry: a tool to monitor fish swimming behavior in sea-cage aquaculture," Frontiers in Marine Science, vol. 7, p. 645, 2020.
[12]B. Kim, H. Joe, and S. C. Yu, "High-precision Underwater 3D Mapping Using Imaging Sonar for Navigation of Autonomous Underwater Vehicle," (in English), Int. J. Control Autom. Syst., Article vol. 19, no. 9, pp. 3199-3208, Sep 2021, doi: 10.1007/s12555-020-0581-8.
[13]M. Sung, J. Kim, H. Cho, M. Lee, and S. C. Yu, "Underwater-Sonar-Image-Based 3D Point Cloud Reconstruction for High Data Utilization and Object Classification Using a Neural Network," (in English), Electronics, Article vol. 9, no. 11, p. 19, Nov 2020, Art no. 1763, doi: 10.3390/electronics9111763.
[14]A. Xiao, J. Huang, D. Guan, X. Zhang, S. Lu, and L. Shao, "Unsupervised point cloud representation learning with deep neural networks: A survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
[15]Y. Yang, C. Feng, Y. Shen, and D. Tian, "Foldingnet: Point cloud auto-encoder via deep grid deformation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 206-215.
[16]C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets for 3d classification and segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652-660.
[17]C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical feature learning on point sets in a metric space," Advances in neural information processing systems, vol. 30, 2017.
[18]E. Remelli, P. Baque, and P. Fua, "Neuralsampler: Euclidean point cloud auto-encoder and sampler," arXiv preprint arXiv:1901.09394, 2019.
[19]S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, "Image segmentation using deep learning: A survey," IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3523-3542, 2021.
[20]J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
[21]O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 2015: Springer, pp. 234-241.
[22]Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, "Unet++: A nested u-net architecture for medical image segmentation," in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, 2018: Springer, pp. 3-11.
[23]F. Milletari, N. Navab, and S.-A. Ahmadi, "V-net: Fully convolutional neural networks for volumetric medical image segmentation," in 2016 fourth international conference on 3D vision (3DV), 2016: Ieee, pp. 565-571.
[24]Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, "3D U-Net: learning dense volumetric segmentation from sparse annotation," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, 2016: Springer, pp. 424-432.
[25]X.-Y. Zhou, Z.-Y. Wang, P. Li, J.-Q. Zheng, and G.-Z. Yang, "One-stage shape instantiation from a single 2D image to 3D point cloud," in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22, 2019: Springer, pp. 30-38.
[26]K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top