跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁婷淯
研究生(外文):LIANG, TING-YU
論文名稱:西印度洋熱帶性鮪類豐度與餌料生物群聚特性受氣候變動影響之研究
論文名稱(外文):Changes in tropical tuna abundances and forage community characteristics affected by climatic variations in the Western Indian Ocean
指導教授:藍國瑋
指導教授(外文):LAN, KUO-WEI
口試委員:張可揚郭庭君蔡文沛藍國瑋
口試委員(外文):CHANG, KE-YANGKUO, TING-CHUNTSAI,WEN-PEILAN, KUO-WEI
口試日期:2023-07-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:72
中文關鍵詞:小波交叉關聯性分析生態系統特性非度量多元尺度法
外文關鍵詞:cross-wavelet analysisecosystem characteristicsNon-metric multidimensional scaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
過去探討關於鮪類與其餌料生物之間變動關係研究大多著墨於太平洋與大西洋,印度洋也多以探討單一海域較多,故本研究下載自印度洋鮪類委員會鮪延繩釣資料,結合Sea Around Us 計畫網站中印度洋專屬經濟區熱帶性鮪類餌料生物豐度資料,解析其鮪類標準化CPUE與餌料生物之間變動,探討鮪類與餌料生物之間豐度在氣候變異下豐度變動之影響。小波交叉關聯性分析結果中顯示黃鰭鮪與大目鮪於研究年間1980-2000年存在4-14年正相關循環週期,後根據兩種鮪類重疊空間分佈劃分為兩個區域,分別為黃鰭鮪與大目鮪共同高釣獲區域(A區)以及黃鰭鮪高釣獲區域(B區)。初步使用非度量多元尺度法(Non-metric multidimensional scaling)與典型相關分析將兩區鮪類標準化CPUE及其餌料生物生物量分為不同分群,A區結果顯示黃鰭鮪與大目鮪相同分群之鰺科與鯖科於典型相關分析中受SST、ONI、DMI及努力量所影響,然與B區鮪類相同分群之槍魷科、鯖科、真蝦下目及鰺科主要受DMI、SST及努力量所影響,另鮪類標準化CPUE與餌料生物生物量相關性分析結果顯示,兩區域中鮪類標準化CPUE多與甲殼類呈正相關趨勢,與其他餌料生物為負相關趨勢,綜合上述結果可以推測兩區中鮪類標準化CPUE與其餌料生物生物量之間變動可能受到人為捕撈以及氣候變異所影響並存在下行控制的現象。
Most studies exploring the relationship between tunas and their prey focused on the Pacific and the Atlantic Oceans, but few studies on the Indian Ocean. Therefore, in this study, the standardized catch per unit effort (CPUE) of tunas was calculated for yellowfin tuna(YFT) and Bigeye tuna (BET) from longline fisheries data from Indian Ocean Tuna Commission. Then the pelagic forage community data was collected from Sea Around Us Project Website to further used to compare the CPUE trend and their prey affected by climate change between YFT and BET. For the spatial distribution, the high CPUE overlapping areas(>60% grids) for YFT and BET (Area A), and the high CPUE of YFT with lower overlapping occurred in Arabian Seas(Area B). The cross-wavelet result showed that YFT and BET had 4-114 years positive correlation periodicity from 1980 to 2000, then using Non-metric multidimensional scaling and canonical correlation analysis to divide tuna and their prey into different groups in two areas, Carangidae and Scombridae are the same group with YFT and BET in area A are affected by ONI, DMI, and effort. Loligindae, Decapoda, Carangidae, and Scombridae are in the same group as tuna in area B affected by ONI and effort. Furthermore, the relationship between the pelagic forage community and tunas revealed a negative correlation with crustaceans but showed a positive correlation with other species in the two areas. Thus, we suggested that the impact of fishing exploitation and climate effect may change the species density of fish populations and be conditioned through top-down control processes in Areas A and B.
摘要 I
Abstract II
目錄 III
壹、 前言 1
1. 印度洋熱帶性鮪類漁業概況 1
2. 氣候變動對印度洋鮪類影響 1
3. 餌料生物變動對黃鰭鮪與大目鮪影響 2
4. 研究目的 3
貳、 研究資料與方法 4
1. 漁獲資料蒐集與分析 4
2. 氣候指數與水文環境資料蒐集與下載 5
3. 印度洋黃鰭鮪與大目鮪主要攝食餌料生物之漁獲量資料 6
4. 時間序列分析法 6
5. 皮爾森相關性檢定(Pearson correlation) 7
6. 非度量性多元尺度法(Non-metric multidimensional scaling, NMDS)與集群分析法(Cluster analysis) 8
7. 典型相關分析(Canonical Correlation Analysis, CCA) 9
參、 結果 10
1. 印度洋黃鰭鮪與大目鮪之漁獲概況及重疊區域劃分 10
2. A區及B區鮪類與餌料生物之間分群特性及其受氣候變動之影響 11
3. 氣候變異對鮪類及餌料生物豐度之影響 12
肆、 討論 13
1. 印度洋黃鰭鮪與大目鮪同步變動特性 13
2. 鮪類與餌料生物之間生態系統特性 14
3. 海洋環境及人為捕撈對餌料生物及鮪類之間的影響 14
伍、 結論及未來展望 16
1. 結論 16
2. 未來展望 16
參考文獻 17


表目錄
Table 1. A區所涵蓋國家之餌料生物捕獲量資料 23
Table 2. 下載B區所涵蓋國家之餌料生物捕獲量資料 24
Table 3. 兩個分區中鮪類與同群餌料生物之小波交叉關聯性分析結果 (a) A區 (b) B區 25
Table 4. 利用典型相關分析探討A區努力量(Effort)、氣候變異指數(PDO、DMI、EMSO)及海表溫度下與A區鮪類標準化CPUE和餌料生物生物量之間相關性 26
Table 5. A區典型相關分析中Root 1以及Root 2中相關性較高之環境因子與物種之小波交叉關聯性分析結果表 27
Table 6. 利用典型相關分析探討B區努力量(Effort)、氣候變異指數(PDO、DMI、EMSO)及海表溫度下與B區鮪類標準化CPUE和餌料生物生物量之間相關性 28
Table 7. B區典型相關分析中Root 1以及Root 2中相關性較高之環境因子與物種之小波交叉關聯性分析結果表 29

圖目錄
Figure 1. 黃鰭鮪外部型態圖 30
Figure 2. 1980-2019年黃鰭鮪在不同漁法下之平均漁獲量分佈圖 31
Figure 3. 1980-2018年印度洋海域黃鰭鮪及大目鮪不同作業方法下漁獲量變化 32
Figure 4. 大目鮪外部型態圖 33
Figure 5. 1980-2019年大目鮪在不同漁法下之平均漁獲量分佈圖 34
Figure 6. 本研究研究流程圖 35
Figure 7. 1980-2019年印度洋海域(a)黃鰭鮪漁獲量及努力量,(b)大目鮪漁獲量及努力量,(c)黃鰭鮪名目CPUE及標準化CPUE,(d)大目鮪名目CPUE及標準化CPUE圖 36
Figure 8. 1980-2018年鮪類努力量分佈圖,顯色區域為高努力量區域(努力量>60%) (a)1980-1989 (b)1990-1999 (c)2000-2009 (d)2010-2018
37
Figure 9. 1980-2018年黃鰭鮪與大目鮪漁獲量分佈圖 38
Figure 10. 1980~2018年印度洋黃鰭鮪名目CPUE各10年間空間分佈圖 (a)1980-1989 (b)1990-1999 (c)2000-2009 (d)2010-2018 39
Figure 11. 1980~2018年印度洋大目鮪名目CPUE各10年間空間分佈圖 (a)1980-1989 (b)1990-1999 (c)2000-2009 (d)2010-2018 40
Figure 12. 印度洋黃鰭鮪與大目鮪小波交叉關聯性分析結果 41
Figure 13. 1980-2018年鮪類重疊空間分佈圖 42
Figure 14. A區黃鰭鮪與大目鮪小波交叉關聯性分析結果 43
Figure 15. 1980-2018年間A區黃鰭鮪與大目鮪努力量、漁獲量、名目CPUE以及標準化CPUE之年別時序列 44
Figure 16. 1980-2018年間B區黃鰭鮪努力量、漁獲量、名目CPUE以及標準化CPUE之年別時序列 45
Figure 17. 利用NMDS 將A區鮪類標準化CPUE以及餌料生物生物量進行物種分群 46
Figure 18. 利用NMDS 將B區鮪類標準化CPUE以及餌料生物生物量進行物種分群 47
Figure 19. A區集群分析年份樹狀圖 48
Figure 20. A區集群分析物種樹狀圖 49
Figure 21. B區集群分析年份樹狀圖 50
Figure 22. B區集群分析物種樹狀圖 51
Figure 23. A區中(a) 鮪類標準化CPUE、餌料生物生物量、鮪類捕獲量(噸)、漁獲努力量之離均差變動圖以及(b)物種與(c)時間分群圖 52
Figure 24. B區中(a) 鮪類標準化CPUE、餌料生物生物量、鮪類捕獲量(噸)、漁獲努力量之離均差變動圖以及(b)物種與(c)時間分群圖 53
Figure 25. A區鮪類標準化CPUE與餌料生物生物量依據營養位階排列之皮爾森相關性分析 54
Figure 26. B區鮪類標準化CPUE與餌料生物生物量依據營養位階排列之皮爾森相關性分析 55
Figure 27. A區與鮪類同一分群之鯖科與鰺科小波交叉關聯性分析 .56
Figure 28 . B區與鮪類同一分群之鯖科、鰺科、真蝦下目、槍魷科小波交叉關聯性分析 57
Figure 29 . A區物種與環境因子及努力量之典型相關分析結果 58
Figure 30 . A區中於典型相關分析中Root 1中相關性較高之環境因子與物種之小波交叉關聯性分析 59
Figure 31 . A區中於典型相關分析中Root 2中相關性較高之環境因子與物種之小波交叉關聯性分析 60
Figure 32 . B區物種與環境因子及努力量之典型相關分析結果 61
Figure 33 . B區中於典型相關分析中Root 1以及 Root 2中相關性較高之環境因子與物種之小波交叉關聯性分析 62
Figure 34 . 本研究結論圖 63

Adebola, T., & de Mutsert, K. (2019). Investigating Fishing Impacts in Nigerian Coastal Waters Using Marine Trophic Index Analyses. Marine and coastal fisheries, 11(4), 287-294.
Artetxe-Arrate, I., Fraile, I., Marsac, F., Farley, J. H., Rodriguez-Ezpeleta, N., Davies, C. R., ... & Murua, H. (2021). A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean. Advances in Marine Biology, 88, 39-89.
Báez, J. C., Czerwinski, I. A., & Ramos, M. L. (2020). Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean. Fisheries Oceanography, 29(6), 572-583.
Bashmakov, V. F., Zamorov, V. V., & Romanov, E. V. (1991). Diet composition of tunas caught with long lines and purse seines in the western Indian Ocean.
Behera, S. K., & Yamagata, T. (2003). Influence of the Indian Ocean dipole on the Southern Oscillation. Journal of the Meteorological Society of Japan. Ser. II, 81(1), 169-177.
Bertrand, A., Bard, F.-X. & Josse, E. (2002) Tuna food habits related to the micronekton distribution in French Polynesia. Mar. Biol. 140: 1023–1037
Bertrand, A., Josse, E., Bach, P., Gros, P., & Dagorn, L. (2002). Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability. Canadian Journal of Fisheries and Aquatic Sciences, 59(6), 1002-1013.
Boyle, P., & Rodhouse, P. (2008). Cephalopods: ecology and fisheries. John Wiley & Sons.
Cazelles, B., & Stone, L. (2003). Detection of imperfect population synchrony in an uncertain world. Journal of Animal Ecology, 953-968.
Chang, S. K., Hoyle, S., & Liu, H. I. (2011). Catch rate standardization for yellowfin tuna (Thunnus albacares) in Taiwan's distant-water longline fishery in the Western and Central Pacific Ocean, with consideration of target change.Fisheries Research, 107(1-3), 210-220.
Coll, M., & Steenbeek, J. (2017). Standardized ecological indicators to assess aquatic food webs: the ECOIND software plug-in for Ecopath with Ecosim models. Environmental Modelling & Software, 89, 120-130.
Collette, B. (2019). Tunas and billfishes of the world.
Collette, B.B., Boustany, A., Fox, W., Graves, J., Juan Jorda, M. & Restrepo, V. 2021. Thunnus albacares. The IUCN Red List of Threatened Species 2021: e.T21857A46624561. Accessed on 18 June 2023.
Collette, B.B., Boustany, A., Fox, W., Graves, J., Juan Jorda, M. & Restrepo, V. 2021. Thunnus obesus. The IUCN Red List of Threatened Species 2021: e.T21859A46912402. Accessed on 18 June 2023.
Corbineau, A., Rouyer, T., Cazelles, B., Fromentin, J. M., Fonteneau, A., & Ménard, F. (2008). Time series analysis of tuna and swordfish catches and climate variability in the Indian Ocean (1968-2003). Aquatic Living Resources, 21(3), 277-285.
Deepa, J. S., Gnanaseelan, C., Mohapatra, S., Chowdary, J. S., Karmakar, A., Kakatkar, R., & Parekh, A. (2019). The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Climate Dynamics, 52, 5045-5058.
Dexter, E., Rollwagen‐Bollens, G., & Bollens, S. M. (2018). The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling.Limnology and Oceanography: Methods,16(7), 434-443.
Duffy, L. M., Kuhnert, P. M., Pethybridge, H. R., Young, J. W., Olson, R. J., Logan, J. M., ... & Ménard, F. (2017). Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep Sea Research Part II: Topical Studies in Oceanography, 140, 55-73.
Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566.
Hanamoto, E. (1986). Distribution of bigeye tuna catch in the Pacific Ocean. Bull Jap Soc Fish Oceanogr, 51, 9-15.
Hernandez-Garcia, V. (1995). Xiphias gladius Linnaeus. Fishery Bulletin, 93(2), 403.
Hjermann, D. Ø., Ottersen, G., & Stenseth, N. C. (2004). Competition among fishermen and fish causes the collapse of Barents Sea capelin. Proceedings of the National Academy of Sciences, 101(32), 11679-11684.
Holland, K. N. (1990). Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull, 88, 493-507.
Hsieh, C. H., Chen, C. S., Chiu, T. S., Lee, K. T., Shieh, F. J., Pan, J. Y., & Lee, M. A. (2009) Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of Taiwan. Fisheries Oceanography, 18(2), 102-117.
IOTC, 2019b. Nominal Catch by Species and Gear, by Vessel Flag Reporting Country. IOTC-2019-DATASETS-NCDB. Available at: https://www.iotc.org/data/datasets/ latest/NC [Accessed January 17, 2020].
IOTC. 2019a. Report of the 22nd Session of the IOTC Scientific Committee. IOTC-2019-SC22-R[E].
IOTC. 2020. Draft Reports Status Summary. Bigeye Tuna (BET: Thunnus obesus).
IOTC. 2023a. Review of Indian Ocean yellowfin tuna statistical data. IOTC, Working Party on Tropical Tunas, 31st May - 2nd June 2023.
IOTC. 2023b. Review of Indian Ocean bigeye tuna statistical data. IOTC, Working Party on Tropical Tunas, 31st May - 2nd June 2023.
ISSF. 202. Status of the world fisheries for tuna. Nov. 2020. ISSF Technical Report 2020-16. International Seafood Sustainability Foundation, Washington, D.C., USA
ISSF. 2020. Status of the world fisheries for tuna. ISSF Technical Report 2020-12. International Seafood Sustainability Foundation, Washington, D.C.
Jereb, P., & Roper, C. F. (2006). Cephalopods of the Indian Ocean. A review. Part I. Inshore squids (Loliginidae) collected during the international Indian Ocean expedition. Proceedings of the Biological Society of Washington, 119(1), 91-136.
Jaquemet, S., Potier, M., & Ménard, F. (2011). Do drifting and anchored Fish Aggregating Devices (FADs) similarly influence tuna feeding habits? A case study from the western Indian Ocean. Fisheries Research, 107(1-3), 283-290.
Ju, P., Chen, M., Cheung, W. W., Tian, Y., Yang, S., Sun, P., ... & Lu, Z. (2022). Modelling the structure and functioning of an upwelling ecosystem in the Southern Taiwan Strait, China. Journal of Marine Systems, 226, 103666.
Kaplan, D. M., Chassot, E., Amandé, J. M., Dueri, S., Demarcq, H., Dagorn, L., & Fonteneau, A. (2014). Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives. ICES Journal of Marine Science, 71(7), 1728-1749.
Kornilova, G. N. (1980). Feeding of yellowfin tuna, Thunnus albacares, and bigeye tuna, Thunnus obesus, in the equatorial zone of the Indian Ocean. Journal of Ichthyology, 20(6), 111-119.
Korsmeyer, K. E., & Dewar, H. (2001). Tuna metabolism and energetics. Fish physiology, 19, 35-78.
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., Cane, M., 2006. Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796), 115-119.
Kumar, P. S., Pillai, G. N., & Manjusha, U. (2014). El Nino southern oscillation (ENSO) impact on tuna fisheries in Indian Ocean. SpringerPlus, 3, 1-13.
Lan, K. W., Evans, K., & Lee, M. A. (2013). Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Climatic Change, 119, 63-77.
Lan, K. W., Lee, M. A., Wang, S. P., & Chen, Z. Y. (2015). Environmental variations on swordfish (Xiphias gladius) catch rates in the Indian Ocean. Fisheries Research, 166, 67-79.
Lan, K. W., Lee, M. A., Chou, C. P., & Vayghan, A. H. (2018). Association between the interannual variation in the oceanic environment and catch rates of bigeye tuna (Thunnus obesus) in the Atlantic Ocean. Fisheries Oceanography, 27(5), 395-407.
Lan, K. W., Wu, Y. L., Chen, L. C., Naimullah, M., & Lin, T. H. (2021). Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: A case study of bigeye tuna in the Pacific Ocean. Frontiers in Marine Science, 8, 614594.
Lecomte, M., Rochette, J., Laurans, Y., & Lapeyre, R. (2017). Indian Ocean tuna fisheries: between development opportunities and sustainability issues. IDDRI Development Durable & Relations Internationales.
Lindegren, M., Checkley Jr, D. M., Koslow, J. A., Goericke, R., & Ohman, M. D. (2018). Climate‐mediated changes in marine ecosystem regulation during El Niño. Global change biology, 24(2), 796-809.
Loukos, H., Monfray, P., Bopp, L., & Lehodey, P. (2003). Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results. Fisheries Oceanography, 12(4‐5), 474-482.
Maldeniya, R. (1996). Food consumption of yellowfin tuna, Thunnus albacares, in Sri Lankan waters. Environmental biology of fishes, 47, 101-107.
Maldeniya, R. (1996). Food consumption of yellowfin tuna, Thunnus albacares, in Sri Lankan waters. Environmental biology of fishes, 47, 101-107.
Ménard, F., Lorrain, A., Potier, M., & Marsac, F. (2007). Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Marine Biology, 153, 141-152.
Möllmann, C., Müller-Karulis, B., Kornilovs, G., & St John, M. A. (2008). Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65(3), 302-310.
Naimullah, M., Wu, Y. L., Lee, M. A., & Lan, K. W. (2021). Effect of the El Niño–Southern Oscillation (ENSO) Cycle on the Catches and Habitat Patterns of Three Swimming Crabs in the Taiwan Strait. Frontiers in Marine Science, 1521.
O'DOR, R. K. (1993). Big squid, big currents and big fisheries. Recent advances in cephalopod fisheries biology.
Olson, R. J., Duffy, L. M., Kuhnert, P. M., Galván-Magaña, F., Bocanegra-Castillo, N., & Alatorre-Ramírez, V. (2014). Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Marine Ecology Progress Series, 497, 157-178.
Olson, R. J., Young, J. W., Ménard, F., Potier, M., Allain, V., Goñi, N., ... & Galván-Magaña, F. (2016). Bioenergetics, trophic ecology, and niche separation of tunas. In Advances in marine biology (Vol. 74, pp. 199-344). Academic Press.
Pavés, H. J., González, H. E., Castro, L., & Iriarte, J. L. (2015). Carbon Flows Through the Pelagic Sub-food Web in Two Basins of the Chilean Patagonian Coastal Ecosystem: the Significance of Coastal–Ocean Connection on Ecosystem Parameters. Estuaries and coasts, 38, 179-191.
Pillai, N. G. K., & Satheeshkumar, P. (2013). Conservation and management of tuna fisheries in the Indian ocean and Indian EEZ. International Journal of Marine Science, 3(24), 187-192.
Polacheck, T. (2006). Tuna longline catch rates in the Indian Ocean: Did industrial fishing result in a 90% rapid decline in the abundance of large predatory species?. Marine Policy, 30(5), 470-482.
Potier, M., Marsac, F., Lucas, V., Sabatié, R., Hallier, J. P., & Ménard, F. (2004). Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (Thunnus albacares) and bigeye (T. obesus) in the western tropical Indian Ocean. Western Indian Ocean Journal of Marine Science, 3(1), 51-62.
Potier, M., Romanov, E., Cherel, Y., Sabatié, R., Zamorov, V., & Ménard, F. (2008). Spatial distribution of Cubiceps pauciradiatus (Perciformes: Nomeidae) in the tropical Indian Ocean and its importance in the diet of large pelagic fishes. Aquatic Living Resources, 21(2), 123-134.
Roger, C. (1994b) On feeding conditions for surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis) in the western Indian Ocean. In: Ardill J D. (Ed.) Proceedings of the expert consultation on Indian Ocean Tunas, 5Th session, Mahé, Seychelles, 4-8 Oct. 1993, IPTP Coll. Vol. Work. Doc 8: 131–135.
Roger, T., & Johnson, D. W. (1994). An overview of cooperative learning. Creativity and collaborative learning, 1-21.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360-363.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360-363.
Smale, M. J. (1986). The feeding habits of six pelagic and predatory teleosts in eastern Cape coastal waters (South Africa). Journal of Zoology, 1(2), 357-409.
Stillwell, C. E., & Kohler, N. E. (1985). Food and feeding ecology of the swordfish Xiphias gladius in the western North Atlantic Ocean with estimates of daily ration. Marine ecology progress series. Oldendorf, 22(3), 239-247.
Thompson, A. R., Harvey, C. J., Sydeman, W. J., Barceló, C., Bograd, S. J., Brodeur, R. D., ... & Williams, G. D. (2019). Indicators of pelagic forage community shifts in the California Current large marine ecosystem, 1998–2016. Ecological Indicators, 105, 215-228
Torrence, C., & Webster, P. J. (1999). Interdecadal changes in the ENSO–monsoon system. Journal of climate, 12(8), 2679-2690.
Ummenhofer, C. C., Biastoch, A., & Böning, C. W. (2017). Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. Journal of Climate, 30(5), 1739-1751.
Vibhute, A., Halder, S., Singh, P., Parekh, A., Chowdary, J. S., & Gnanaseelan, C. (2020). Decadal variability of tropical Indian Ocean sea surface temperature and its impact on the Indian summer monsoon. Theoretical and Applied Climatology, 141, 551-566.
Wang, Y., Zhang, F., Geng, Z., Zhang, Y., Zhu, J., & Dai, X. (2023). Effects of Climate Variability on Two Commercial Tuna Species Abundance in the Indian Ocean. Fishes, 8(2), 99.
Whitfield, S., Beauchamp, E., Boyd, D. S., Burslem, D., Byg, A., Colledge, F., ... & White, P. C. (2019). Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics. Global environmental change, 55, 1-14.
Worm, B., & Myers, R. A. (2003). Meta‐analysis of cod–shrimp interactions reveals top down control in oceanic food webs. Ecology, 84(1), 162-173.
Worm, B., & Myers, R. A. (2003). Meta‐analysis of cod–shrimp interactions reveals top‐down control in oceanic food webs. Ecology, 84(1), 162-173.
Wu, Y. L., Lan, K. W., & Tian, Y. (2020). Determining the effect of multiscale climate indices on the global yellowfin tuna (Thunnus albacares) population using a time series analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 175, 104808.
Wu, Y. L., Lan, K. W., Evans, K., Chang, Y. J., & Chan, J. W. (2022). Effects of decadal climate variability on spatiotemporal distribution of Indo-Pacific yellowfin tuna population. Scientific Reports, 12(1), 1-13.
Yasunari, T., & Seki, Y. (1992). Role of the Asian monsoon on the interannual variability of the global climate system. Journal of the Meteorological Society of Japan. Ser. II, 70(1B), 177-189.
Zwolinski, J. P., & Demer, D. A. (2014). Environmental and parental control of Pacific sardine (Sardinops sagax) recruitment. ICES Journal of Marine Science, 71(8), 2198-2207.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top