跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴靖紋
研究生(外文):Tai, Ching-Wen
論文名稱:神經壞死病毒鞘蛋白核仁定位現象對宿主內質網壓力及免疫反應之影響
論文名稱(外文):A Study on the Relationship between Nucleolar Localization of the Nervous Necrosis Virus Capsid Protein and Host cell ER Stress and Immune Response
指導教授:邱品文
指導教授(外文):Pinwen Peter Chiou
口試委員:賴裕順呂明偉邱品文
口試委員(外文):Yu-Shen LaiMing-Wei LuPinwen Peter Chiou
口試日期:2022-12-30
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:52
中文關鍵詞:神經壞死病毒鞘蛋白核仁定位序列內質網壓力先天性免疫
外文關鍵詞:NNV capsid proteinNoLSER stressInnate immunity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經壞死病毒 (nervous necrosis virus, NNV)會造成全球120多種野生和養殖海水幼魚及稚魚感染致死,對石斑魚養殖產業產生重大經濟損失。了解病毒的致病機制有助於控制和預防神經壞死病毒疾病。先前研究已顯示神經壞死病毒在感染後,病毒鞘蛋白 (capsid protein)會定位在細胞核及核仁,表示其有可能會調控宿主細胞基因表現,其定位現象是鞘蛋白上的一段核仁定位序列 (nucleolus localization sequence, NoLS)引導的。本實驗目的為分析NNVCP核仁定位現象是否會調控宿主內質網壓力、先天性免疫基因表現、和對GIV感染的細胞有什麼影響。實驗中使用先前實驗室所製備好的鞘蛋白質體:野生型NNVCP (pcMGNNV2)、刪除NoLS序列NNVCP (NoLSDeL)、點突變NoLS序列NNVCP (29AlaMut),將其分別轉染至石斑魚GK細胞,並於24、48、72小時分析內質網壓力基因;使用poly(I:C)與鞘蛋白質體共轉染至GK細胞,和使用poly(I:C)轉染單一穩定表現鞘蛋白細胞株,並於24、48、72小時分析免疫基因表現;另一實驗將鞘蛋白質體分別轉染至GK細胞24小時後,再以GIV感染,收集出現CPE和過半數CPE的時間點其上清液與細胞,以檢測病毒力價與GIV MCP表現量。實驗結果顯示:野生型CP在24小時開始隨著時間增加內質網壓力;點突變CP與野生型CP相似;刪除型CP增加內質網壓力比野生型CP更多。刪除型CP在poly(I:C)刺激後會誘導GK透過TLR3、MDA5、TLR22引發IFN1活化Mx的一系列免疫反應減少,而與單一穩定細胞株刪除型-GK的結果相似;點突變CP也會減少這一系列免疫反應,但沒有刪除型CP顯著;而與單一穩定細胞株刪除型-GK的結果相反,其增加免疫反應。野生型CP在GK表現會誘導增加GIV MCP表現量,在感染後期刪除型CP和點突變CP更顯著增加MCP表現,但感染後期60小時其上清液之TCID50力價都都無顯著增加GIV病毒力價。結果表明NNVCP的核仁定位序列的阻斷,會增加內質網壓力、減少宿主細胞TLR3、MDA5、TLR22引發IFN1活化Mx的免疫反應,而我們實驗使用的刪除型和點突變NNVCP在先前研究顯示在核仁環堆積的幅度不一樣,所以我們推測其對細胞ER stress和免疫反應有不同幅度的影響,還需做更深入的實驗去探討此現象。GIV感染實驗結果表示NNVCP會增加GIV感染下MCP基因表現,但無明顯調控GIV感染力的狀況。這些研究希望有助於了解神經壞死病毒核仁定位現象對宿主反應之影響。
Nervous necrosis virus (NNV) can cause more than 120 species of wild and cultured juveniles sea fish to be infected and killed worldwide, causing significant economic losses to the grouper aquaculture industry. Understanding the pathogenic mechanism of the virus can help control and prevent neuronecrosis virus disease. Previous studies have shown that after infection with NNV, the viral capsid protein (CP) will be localized in the nucleus and nucleolus, indicating that it may regulate the gene expression of the host cell. The localization is guided by nucleolus localization sequence (NoLS) on the capsid protein. The purpose of this experiment is to study the NNVCP NoLS will regulate host endoplasmic reticulum stress (ER stress), innate immune gene expression, and what effect it has on GIV-infected cells. In the experiment, the NNVCP plasmid is already prepared in the previous laboratory. the experiment will use: wild-type NNVCP (pcMGNNV2), NoLS sequence deletion NNVCP (NoLSDeL), NoLS point mutation NNVCP (29AlaMut), which were respectively transfected into grouper kidney cell (GK), and analyze endoplasmic reticulum stress genes at 24, 48, and 72 hours. in another experiment, co-transfection of poly(I:C) and NNVCP into GK cells, and poly(I:C) transfection of a single stable expressing NNVCP cell line, the two experiment will be analyzed at 24, 48, and 72 hours of Immune gene expression. in another experiment, the NNVCP were transfected into GK cells for 24 hours, and then infected with GIV, then analyze GIV MCP expression, and titer. The results showed that: the wild-type CP increased the ER stress relative gene expression at 24 hours. the 29AlaMut CP was similar to the WTCP, but the ER stress relative gene expression decreased at 72 hours after transfection. the NoLSDeL CP increased the ER stress relative gene expression more than wild-type CP. After poly(I:C) stimulation, NoLSDeL CP can induce GK to decrease the expression of TLR3, MDA5, and TLR22 mediated IFN1 and Mx immune responses,and the result is similar to single stable clone NoLSDeL-GK; 29AlaMut CP also reduce immune responses, but not as significantly as NoLSDeL CP; whereas, contrary to the results of single stable cell line NoLSDeL-GK, it increased immune responses. The expression of WTCP in GK can induce an increase in the expression of GIV MCP, and the NoLSDeL CP and 29AlaMut CP can significantly increase the expression of MCP in the later stage of infection, but TCID50 shows that the supernatant at 60 hours after infection has no significant increase the GIV virus titer. The results show that the blockade of the NoLS of NNVCP will increase the ER stress, and reduce host cell TLR3, MDA5, and TLR22 to trigger the immune response of IFN1-activated Mx. Previous studies have shown NoLSDeL CP and 29AlaMut CP accumulate in the nucleolar ring is different, so we speculate that it has different effects on cellular ER stress and immune response, and more in-depth experiments are needed to explore this phenomenon. The experimental results show that NNVCP can increase the expression of MCP gene under GIV infection, but it does not significantly regulate the infectivity of GIV. It is hoped that these studies will contribute to the understanding of the impact of the nucleolar localization phenomenon of NNV on host responses.
謝辭 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2.1 神經壞死病毒 2
2.1.1 病毒性神經壞死病毒症 2
2.1.2 病毒介紹與其生活史 2
2.1.3 病毒引起的內質網壓力 3
2.2 神經壞死病毒外鞘蛋白 (NNV capsid protein) 4
2.3 核仁 5
2.3.1 核仁定位序列 (nucleolar-localization signals, NoLS) 5
2.4 魚類免疫系統 6
2.5 聚肌胞苷酸 (Polyinosinic acid-polycytidylic acid, Poly (I:C)) 6
2.6 石斑魚虹彩病毒 (grouper iridovirus, GIV) 7
第三章 實驗材料與方法 8
3.1 實驗細胞 8
3.1.1 細胞培養(cell culture) 8
3.1.2 細胞解凍 8
3.1.3 細胞凍存 8
3.2 質體來源 9
3.3 細胞瞬時轉染 (transient transfection) 9
3.4 單一穩定細胞株製備 9
3.4.1 G418處理轉染質體的細胞 9
3.4.2 去除G418 10
3.4.3 單一細胞純化 10
3.5 poly(I:C)與各種NNVCP分別共轉染至GK或HEK293 10
3.5.1 核糖核酸萃取 (RNA extraction) 10
3.5.2 反轉錄聚合酶合成cDNA 11
3.5.3 即時定量聚合酶連鎖反應 (Real-time quantitative PCR) 11
3.6 瞬時轉染NNVCP的GK cell經GIV攻毒後之上清液去檢測病毒MCP基因表現及GIV力價變化 11
3.6.1 GIV病毒吸附 11
3.6.2 細胞半數致死劑量 (50% tissue culture infective dose, TCID50) 12
第四章 實驗結果 13
4.1 瞬時轉染 (transient transfection)不同NNVCP至GK細胞後其內質網壓力基因之影響 13
4.1.1 BIP基因表現之情形: 13
4.1.2 PERK、ATF-6基因表現之情形: 13
4.1.3 CHOP、GADD34基因表現之情形: 14
4.2 瞬時轉染 (transient transfection)不同NNVCP至GK或HEK293細胞在poly(I:C)誘導下其免疫基因之影響 14
4.2.1 TLR3、TLR22、MDA5基因表現之情形 14
4.2.2 IFN1、Mx基因表現之情形 15
4.3 NNVCP單一穩定細胞株 (Stable Cell Single-clone)建立 16
4.4 NNVCP單一穩定細胞株 (Stable Cell Single-clone)細胞株單一來源永久GK細胞株在poly(I:C)誘導下其免疫基因之影響 16
4.4.1 TLR3、TLR22、MDA5基因表現之情形 16
4.4.2 IFN1、Mx基因表現之情形 17
4.5 瞬時轉染 (transient transfection)野生型或點突變NNVCP之GK細胞在GIV攻毒下其MCP基因表現之情形 17
4.6 瞬時轉染 (transient transfection)野生型或點突變NNVCP之GK細胞在GIV攻毒下其細胞上清液GIV病毒力價之TCID50變化 18
第五章 討論 19
第六章 圖表 21
第七章 參考文獻 47
Adachi, K., Ichinose, T., Takizawa, N., Watanabe, K., Kitazato, K., & Kobayashi, N. (2007). Inhibition of betanodavirus infection by inhibitors of endosomal acidification. Arch Virol, 152(12), 2217-2224. doi:10.1007/s00705-007-1061-7
Bahadori, M., Azizi, M. H., Dabiri, S., & Bahadori, N. (2022). Effects of Human Nucleolus Upon Guest Viral-Life, Focusing in COVID-19 Infection: A Mini- Review. Iran J Pathol, 17(1), 1-7. doi:10.30699/ijp.2021.540305.2744
Bandín, I., & Souto, S. (2020). Betanodavirus and VER Disease: A 30-year Research Review. Pathogens, 9(2). doi:10.3390/pathogens9020106
Boisvert, F.-M., van Koningsbruggen, S., Navascués, J., & Lamond, A. I. (2007). The multifunctional nucleolus. Nature Reviews Molecular Cell Biology, 8(7), 574-585. doi:10.1038/nrm2184
Breuil, G., Bonami, J., Pepin, J., & Pichot, Y. J. A. (1991). Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax) larvae and juveniles. 97(2-3), 109-116.
Callinan, R. (1988). Diseases of Australian native fishes. Paper presented at the Fish Diseases Refresher Course for Veterinarians Proceedings.
Chang, J.-S., & Chi, S.-C. (2014). GHSC70 Is Involved in the Cellular Entry of Nervous Necrosis Virus. J Virol, 89(1), 61-70. doi:10.1128/JVI.02523-14
Chen, S.-P., Peng, R.-H., & Chiou, P. P. (2015). Modulatory effect of CpG oligodeoxynucleotide on a DNA vaccine against nervous necrosis virus in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol, 45(2), 919-926. doi:https://doi.org/10.1016/j.fsi.2015.06.013
Chinchar, V. G., Hick, P., Ince, I. A., Jancovich, J. K., Marschang, R., Qin, Q., . . . Ictv Report, C. (2017). ICTV Virus Taxonomy Profile: Iridoviridae. J Gen Virol, 98(5), 890-891. doi:10.1099/jgv.0.000818
Ding, X., Liang, Y., Peng, W., Li, R., Lin, H., Zhang, Y., & Lu, D. (2018). Intracellular TLR22 acts as an inflammation equalizer via suppression of NF-κB and selective activation of MAPK pathway in fish. Fish Shellfish Immunol, 72, 646-657. doi:https://doi.org/10.1016/j.fsi.2017.11.042
Fenner, B. J., Thiagarajan, R., Chua, H. K., & Kwang, J. (2006). Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol, 80(1), 85-94. doi:10.1128/jvi.80.1.85-94.2006
Glazebrook, J. S., Heasman, M. P., & de Beer, S. W. (1990). Picorna-like viral particles associated with mass mortalities in larval barramundi, Lates calcarifer Bloch. J Fish Dis, 13(3), 245-249. doi:https://doi.org/10.1111/j.1365-2761.1990.tb00780.x
Gouzil, J., Fablet, A., Lara, E., Caignard, G., Cochet, M., Kundlacz, C., . . . Vitour, D. (2017). Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization. J Virol, 91(1). doi:10.1128/jvi.01263-16
Guo, Y. X., Dallmann, K., & Kwang, J. (2003). Identification of nucleolus localization signal of betanodavirus GGNNV protein alpha. Virology, 306(2), 225-235. doi:10.1016/s0042-6822(02)00081-8
He, B. (2006). Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death & Differentiation, 13(3), 393-403. doi:10.1038/sj.cdd.4401833
Hiscox, J. A. (2002). The nucleolus – a gateway to viral infection? Arch Virol, 147(6), 1077-1089. doi:10.1007/s00705-001-0792-0
Hiscox, J. A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D., & Brooks, G. (2001). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol, 75(1), 506-512. doi:10.1128/jvi.75.1.506-512.2001
Ito, Y., Okinaka, Y., Mori, K.-I., Sugaya, T., Nishioka, T., Oka, M., & Nakai, T. J. D. o. A. o. (2008). Variable region of betanodavirus RNA2 is sufficient to determine host specificity. 79(3), 199-205.
Iwamoto, T., Mise, K., Takeda, A., Okinaka, Y., Mori, K.-I., Arimoto, M., . . . Nakai, T. (2005). Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. 86(10), 2807-2816. doi:https://doi.org/10.1099/vir.0.80902-0
Iwamoto, T., Okinaka, Y., Mise, K., Mori, K., Arimoto, M., Okuno, T., & Nakai, T. (2004). Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol, 78(3), 1256-1262. doi:10.1128/jvi.78.3.1256-1262.2004
Johansen, R., Grove, S., Svendsen, A. K., Modahl, I., & Dannevig, B. (2004). A sequential study of pathological findings in Atlantic halibut, Hippoglossus hippoglossus (L), throughout one year after an acute outbreak of viral encephalopathy and retinopathy. J Fish Dis, 27(6), 327-341. doi:10.1111/j.1365-2761.2004.00548.x
Krishnan, R., Qadiri, S. S. N., & Oh, M.-J. (2019). Functional characterization of seven-band grouper immunoglobulin like cell adhesion molecule, Nectin4 as a cellular receptor for nervous necrosis virus. Fish Shellfish Immunol, 93, 720-725. doi:https://doi.org/10.1016/j.fsi.2019.08.019
Kubota, S., Copeland, T. D., & Pomerantz, R. J. (1999). Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. Oncogene, 18(7), 1503-1514. doi:10.1038/sj.onc.1202429
Labrecque, M., Marchand, C., & Archambault, D. (2020). Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Viruses, 12(8). doi:10.3390/v12080900
Lafontaine, D. L. J., Riback, J. A., Bascetin, R., & Brangwynne, C. P. (2021). The nucleolus as a multiphase liquid condensate. Nature Reviews Molecular Cell Biology, 22(3), 165-182. doi:10.1038/s41580-020-0272-6
Lai, Y.-S., Murali, S., Ju, H.-Y., Wu, M.-F., Guo, I.-C., Chen, S.-C., . . . Chang, C.-Y. (2000). Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. 23(6), 379-388. doi:https://doi.org/10.1046/j.1365-2761.2000.00247.x
Liu, W., Hsu, C.-H., Hong, Y.-R., Wu, S.-C., Wang, C.-H., Wu, Y.-M., . . . Lin, C.-S. J. J. o. g. v. (2005). Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus. 86(9), 2553-2561.
Liu, Y., Tran, B. N., Wang, F., Ounjai, P., Wu, J., & Hew, C. L. (2016). Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells. Sci Rep, 6(1), 18696. doi:10.1038/srep18696
Lu, M.-W., Ngou, F.-H., Chao, Y.-M., Lai, Y.-S., Chen, N.-Y., Lee, F.-Y., & Chiou, P. P. (2012). Transcriptome characterization and gene expression of Epinephelus spp in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro. BMC genomics, 13(1), 651. doi:10.1186/1471-2164-13-651
Mélèse, T., & Xue, Z. J. C. o. i. c. b. (1995). The nucleolus: an organelle formed by the act of building a ribosome. 7(3), 319-324.
MacKinnon, M. J. M. o. W., & Bass/Barramundi, C. S. (1987). Rearing and growth of larval and juvenile barramundi (Lates calcarifer) in Queensland. 148-153.
Mai, W., Huang, F., Chen, H., Zhou, Y., & Chen, Y. J. V. r. (2017). Nervous necrosis virus capsid protein exploits nucleolar phosphoprotein Nucleophosmin (B23) function for viral replication. 230, 1-6.
Matsuo, A., Oshiumi, H., Tsujita, T., Mitani, H., Kasai, H., Yoshimizu, M., . . . Seya, T. (2008). Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J Immunol, 181(5), 3474-3485. doi:10.4049/jimmunol.181.5.3474
Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., & Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology, 187(1), 368-371. doi:10.1016/0042-6822(92)90329-n
Munday, B. L., Kwang, J., & Moody, N. (2002). Betanodavirus infections of teleost fish: a review. J Fish Dis, 25(3), 127-142. doi:https://doi.org/10.1046/j.1365-2761.2002.00350.x
Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., & Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol, 63(4), 1633-1636. doi:10.1128/aem.63.4.1633-1636.1997
Novoa, I., Zeng, H., Harding, H. P., & Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol, 153(5), 1011-1022. doi:10.1083/jcb.153.5.1011
Rao, R. V., Ellerby, H. M., & Bredesen, D. E. (2004). Coupling endoplasmic reticulum stress to the cell death program. Cell Death & Differentiation, 11(4), 372-380. doi:10.1038/sj.cdd.4401378
Rowland, R. R., Kervin, R., Kuckleburg, C., Sperlich, A., & Benfield, D. A. (1999). The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res, 64(1), 1-12. doi:10.1016/s0168-1702(99)00048-9
Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: coping with stress. Trends in Cell Biology, 14(1), 20-28. doi:https://doi.org/10.1016/j.tcb.2003.11.001
Sahoo, B. R. (2020). Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol, 161, 1602-1617. doi:10.1016/j.ijbiomac.2020.07.293
Sahul Hameed, A. S., Ninawe, A. S., Nakai, T., Chi, S. C., Johnson, K. L., & Ictv Report, C. (2019). ICTV Virus Taxonomy Profile: Nodaviridae. J Gen Virol, 100(1), 3-4. doi:10.1099/jgv.0.001170
Salvetti, A., & Greco, A. (2014). Viruses and the nucleolus: The fatal attraction. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(6), 840-847. doi:https://doi.org/10.1016/j.bbadis.2013.12.010
Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(12), 3460-3470. doi:https://doi.org/10.1016/j.bbamcr.2013.06.028
Souto, S., Mérour, E., Biacchesi, S., Brémont, M., Olveira, J. G., & Bandín, I. (2015). In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. 96(6), 1287-1296. doi:https://doi.org/10.1099/vir.0.000064
Stenström, L., Mahdessian, D., Gnann, C., Cesnik, A. J., Ouyang, W., Leonetti, M. D., . . . Lundberg, E. (2020). Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol, 16(8), e9469. doi:10.15252/msb.20209469
Stewart, M. (2007). Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol, 8(3), 195-208. doi:10.1038/nrm2114
Su, Y. C., Chiu, H. W., Hung, J. C., & Hong, J. R. (2014). Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting. Apoptosis, 19(10), 1457-1470. doi:10.1007/s10495-014-1016-x
Tan, C., Huang, B., Chang, S. F., Ngoh, G. H., Munday, B., Chen, S. C., & Kwang, J. (2001). Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. 82(3), 647-653. doi:https://doi.org/10.1099/0022-1317-82-3-647
Thiry, M., & Lafontaine, D. L. J. (2005). Birth of a nucleolus: the evolution of nucleolar compartments. Trends in Cell Biology, 15(4), 194-199. doi:https://doi.org/10.1016/j.tcb.2005.02.007
Uribe, C., Folch, H., Enríquez, R., & Moran, G. J. V. m. (2011). Innate and adaptive immunity in teleost fish: a review. 56(10), 486.
Wu, Y. M., Hsu, C. H., Wang, C. H., Liu, W., Chang, W. H., & Lin, C. S. (2008). Role of the DxxDxD motif in the assembly and stability of betanodavirus particles. Arch Virol, 153(9), 1633-1642. doi:10.1007/s00705-008-0150-6
Yoshikoshi, K., & Inoue, K. (1990). Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel). J Fish Dis, 13(1), 69-77. doi:https://doi.org/10.1111/j.1365-2761.1990.tb00758.x
Zapata, A., Diez, B., Cejalvo, T., Gutiérrez-de Frías, C., & Cortés, A. (2006). Ontogeny of the immune system of fish. Fish Shellfish Immunol, 20(2), 126-136. doi:10.1016/j.fsi.2004.09.005
Zhang, W., Jia, K., Jia, P., Xiang, Y., Lu, X., Liu, W., & Yi, M. (2020). Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLOS Pathogens, 16(7), e1008668. doi:10.1371/journal.ppat.1008668
Zhang, W. W., Jia, P., Lu, X. B., Chen, X. Q., Weng, J. H., Jia, K. T., & Yi, M. S. (2022). Capsid protein from red-spotted grouper nervous necrosis virus induces incomplete autophagy by inactivating the HSP90ab1-AKT-MTOR pathway. Zool Res, 43(1), 98-110. doi:10.24272/j.issn.2095-8137.2021.249
Zhao, X., & Tikoo, S. K. (2020). Nuclear and Nucleolar Localization of Bovine Adenovirus-3 Protein V. Front Microbiol, 11, 579593. doi:10.3389/fmicb.2020.579593
Zhou, J., Li, J., Li, H., Zhang, Y., Dong, W., Jin, Y., . . . Zhou, J. (2021). The serine-48 residue of nucleolar phosphoprotein nucleophosmin-1 plays critical role in subcellular localization and interaction with porcine circovirus type 3 capsid protein. Vet Res, 52(1), 4. doi:10.1186/s13567-020-00876-9
藍安杰. (2019). 神經壞死病毒鞘蛋白對於宿主基因表現之影響. (碩士), 國立臺灣海洋大學, 基隆市.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top