跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建元
研究生(外文):Chen, Chien-Yuan
論文名稱:利用質譜儀分析鹵水之蛋白質體及代謝體
論文名稱(外文):Analyzing proteome and metabolome of brine by Mass Spectrometry
指導教授:許邦弘許邦弘引用關係
指導教授(外文):Hsu, Pang-Hung
口試委員:張權發吳欣怡許邦弘
口試委員(外文):Chang, Chuan-FaWu, Hsin-YiHsu, Pang-Hung
口試日期:2023-01-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:75
中文關鍵詞:鹵水臭豆腐蛋白質體學代謝體學液相層析串聯質譜儀
外文關鍵詞:brinestinky tofuproteomicsmetabolomicsliquid chromatography tandem mass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
黃豆起源於中國,神農氏將其記載為『菽』,因其營養價值高被列為五穀之一,是中國主要飲食,相關的黃豆製品因應而生。具有惡臭味道的台灣傳統美食臭豆腐,是豆腐與臭鹵水共同浸泡而產生。臭鹵水則是經由蔬菜、水果經由天然發酵,發酵過程鹵水中微生物、細菌以及真菌等生長,並且產生酵素進行催化作用,分解豆腐中脂質、蛋白質以及碳水化合物,產生了一些胺類、脂類等產物,這些可能是臭豆腐的氣味來源。
隨著高解析質譜儀的出現,憑藉質譜儀的高靈敏、高解析的優點去檢測出鹵水中氣味來源的小分子,並且藉由偵測發酵過程中蛋白質的變化,來了解氣味產生的過程。發酵後鹵水以及鹵水與豆腐浸泡後兩組別,總共鑑定到181種蛋白質,以及156種代謝體。我們於代謝體質譜訊號中找到糞便中主要氣味來源的吲哚,與氨相同具有強烈尿味的乙二胺,以及特殊甜味的乙酸脂等的氣味分子衍生物,這些代謝體可能是影響臭豆腐氣味的主要成分。
Soybean originated in China. Shen-nung recorded it as "shu". Because of its high nutritional value, it was listed as one of the five grains. It is the main diet in China, and related soybean products were born accordingly. Stinky tofu, a traditional Taiwanese delicacy with a foul smell, is produced by soaking tofu and stinky brine. Smelly brine is naturally fermented by vegetables and fruits. During the fermentation process, microorganisms, bacteria, and fungi grow in the brine, and enzymes are produced to catalyze the decomposition of lipids, proteins, and carbohydrates in tofu, and some amines and hydrogen sulfide are produced. And other products, these may be the source of the smell of stinky tofu.
The advent of high-resolution mass spectrometers, the advantages of high sensitivity and high resolution of mass spectrometers are used to detect small molecules that are the source of flavors in brine, and to understand the process of flavor generation by detecting changes in proteins during fermentation. total of 181 proteins and 156 metabolites were identified in the two groups of fermented brine and brine and tofu soaked. In the mass spectrometry signals of metabolites, we found indole, which is the main source of flavor in feces, ethylenediamine, which has a strong urine flavor like ammonia, and odorant molecular derivatives such as acetate, which has a special sweet taste. These metabolites may be the ones that affect flavor. The main component of the smell of tofu.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 VIII
第一章 、前言 9
1.1 鹵水 9
1.2 蛋白質體學 10
1.3 代謝體學 11
1.4 蛋白質體學的定性技術 12
1.4.1 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 12
1.4.2 西方墨點法 13
1.4.3 酵素結合免疫吸附分析法 13
1.5 蛋白質體學的定量技術 14
1.5.1 分光光度計 14
1.5.2 紫外分光光度計 14
1.5.3 雙辛可寧酸蛋白質定量法 14
1.5.4 布拉德福蛋白質定量法 15
1.5.1 串聯質量標籤 15
1.5.5 無標記定量 15
1.6 質譜儀技術的發展與應用 15
1.6.1 游離法 16
1.6.1.1 基質輔助雷射脫附游離法 16
1.6.1.2 電灑游離法 16
1.6.2 質量分析器 17
1.6.2.1 四極柱質量分析器 17
1.6.2.2 飛行時間質量分析器 17
1.6.2.3 傅立葉轉換離子迴旋共振質量分析器 17
1.6.2.4 軌道阱 17
1.6.3 質譜與分離技術結合 18
1.6.3.1 氣相層析質譜 18
1.6.3.2 液相層析質譜 18
1.6.4 質譜儀於蛋白質體學的應用 18
1.6.5 質譜儀於代謝體學的應用 19
1.7 研究動機 19
第二章 、實驗試劑與設備 21
2.1 藥品 21
2.1.1 蛋白質定量 21
2.1.2 蛋白質水解 21
2.1.3 蛋白質胜肽純化 21
2.1.4 代謝小分子萃取 21
2.2 儀器 21
2.2.1 串聯式質譜儀 21
2.2.2 數據處理及分析軟體 21
2.2.3 其他 22
第三章 、實驗方法 23
3.1 鹵水 23
3.2 鹵水前處理 23
3.3 蛋白質純化 23
3.3.1 蛋白質定量 23
3.3.1.1 標準曲線繪製 23
3.3.1.2 測定鹵水濃度 23
3.4 蛋白質水解 24
3.4.1 水解溶液中蛋白質 24
3.4.1.1 蛋白質去折疊 24
3.4.1.2 蛋白質水解 24
3.4.1.3 蛋白質胜肽純化 24
3.5 小分子萃取 24
3.6 蛋白質體於液相層析串聯式質譜分析 25
3.7 代謝體於循環離子淌度串聯式質譜分析 25
3.8 數據處理以及分析 25
第四章 、結果與討論 27
4.1 鹵水 27
4.2 鹵水中原料於質譜偵測結果 27
4.3 微生物於鹵水中影響 29
4.4 氣味來源 31
4.5 食品污染 33
第五章 、結論 35
參考文獻 70
1. Shiou-Huei Chao, et al., Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. International Journal of Food Microbiology 2008, 123, 134-141.
2. Lee S.F. et al., Isolation and identification of protein hydrolyzing bacteria from chaw-tofu. Food Science 1996, 23, 1-9.
3. Hui Tang, et al., The formation mechanisms of key flavor substances in stinky tofu brine based on metabolism of aromatic amino acids. Food Chemistry 2022, 392, 133253.
4. Jingsi Gu, et al., Biogenic amines content and assessment of bacterial and fungal diversity in stinky tofu – A traditional fermented soy curd. LWT Food Science and Technology 2018, 88, 26-34.
5. Zhen-Feng Liu, et al., Changes in biogenic amines during the conventional production of stinky tofu. international journal of food science and technology 2011, 46, 687-694.
6. Elio Gomes Fernades, et al., Diversity of endophytic fungi in Glycine max. Microbiological Research 2015, 181, 84-92.
7. M.J.Rob Nout., Rich nutrition from the poorest – Cereal fermentations in Africa and Asia. Food Microbiology 2009, 26(7), 685-692.
8. Lekh R. Batra, et al., Some Asian Fermented Foods and Beverages, And Associated Fungi. Mycologia 1974, 66(6), 942-950.
9. François Bourdichon, et al., Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology 2012, 154(3), 87-97.
10. Xianghai Cai, et al., Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production. Antonie van Leeuwenhoek Journal of Microbiology 2014, 106, 1049–1060.
11. Rajen Chettri, et al., Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India. International Journal of Food Microbiology 2015, 197, 72-76.
12. L.T.Songré-Ouattara, et al., Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. International Journal of Food Microbiology 2008, 128(2), 395-400.
13. Nana T. Annan, et al., Influence of starter culture combinations of Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei on aroma in Ghanaian maize dough fermentation. European Food Research and Technology 2003, 216, 377–384.

14. Christel Lambrechts, et al., Utilization of phytate by some yeasts. Biotechnology Letters 1992, 14, 61-66.
15. De Angelis M, et al., Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology 2003, 87, 259-270.
16. Kuntal Ghosh, et al., Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresource Technology 2015, 188, 161-168.
17. Jyoti Prakash Tamang., “Ethno-microbiology” of ethnic Indian fermented foods and alcoholic beverages. Applied Microbiology International 2022, 133(1), 145-161.
18. Jingsi Gu, et al., Analysis of bacterial diversity and biogenic amines content during the fermentation processing of stinky tofu. Food Research International 2018, 111, 689-698.
19. Yang Wang, et al., Identification and analysis of the flavor characteristics of unfermented stinky tofu brine during fermentation using SPME-GC–MS, e-nose, and sensory evaluation. Journal of Food Measurement and Characterization 2020, 14, 597–612.
20. Yuping Liu, et al., Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings. Molecules 2012, 17(4), 3708-3722.
21. Hui Tang, et al., GC-MS Characterization of Volatile Flavor Compounds in Stinky Tofu Brine by Optimization of Headspace Solid-Phase Microextraction Conditions. Molecules 2018, 23(12), 3155.
22. Han-na Liu, et al., Lactic acid bacteria in traditional fermented Chinese foods. Food Research International 2011, 44(3), 643-651.
23. Sabrinada Silva Sabo, et al., Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International 2014, 64, 527-536.
24. Michael G Gänzle., Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science 2015, 2, 106-117.
25. Igor Ulitsky, et al., lincRNAs: Genomics, Evolution, and Mechanisms. Cell 2013, 154(1), 26-46.
26. Mike Tyers, et al., From genomics to proteomics. Nature 2003, 422, 193-197.
27. Jürgen Cox, et al., Is Proteomics the New Genomics? Cell 2007, 130(3), 395-398.
28. Parag Mallick, et al., Proteomics: a pragmatic perspective. Nature Biotechnology 2010, 28, 695-709.
29. Picotti, P., Bodenmiller, B. & Aebersold, R. Proteomics meets the scientific method. Nature Methods 2013, 10, 24–27.
30. Crutchfield, C. A., Thomas, S. N., Sokoll, L. J. & Chan, D. W. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteom 2016, 13, 1.
31. Anderson, N. L.The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin. Chem. 2010, 56, 177-185.
32. Aebersold, R., et al., How many human proteoforms are there? Nat. Chem. Biol. 14, 2018, 206–214.
33. Geyer, P. E., et al., Plasma proteome profiling to assess human health and disease. Cell Syst. 2016, 2, 185–195.
34. Radha G. Krishna, et al., Post-Translational Modifications of Proteins. Methods in Protein Sequence Analysis. 1993, 167–172.
35. Smith, R., Mathis, A. D., Ventura, D. & Prince, J. T. Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist’s point of view. BMC Bioinforma. 2014, 15, S9.
36. Gillette, M. A. & Carr, S. A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods 2013, 10, 28–34.
37. Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 2014, 11, 1114–1125.
38. 台灣質譜學會, 質譜分析技術原理與應用. 2015, ISBN: 978-957-21-9992-3
39. Jeffrey R. Idle, et al., Metabolomics. Cell Metabolism 2007, 6(5,7), 348-351.
40. Jeremy K. Nicholson, et al., Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism. Nature Reviews Drug Discovery 2003, 2, 668-676.
41. Rawi Ramautar, et al., Human metabolomics: strategies to understand biology. Current Opinion in Chemical Biology 2013, 17(5), 841-846.
42. Mamas Mamas, et al., The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology 2011, 85, pages5-17.
43. Paul Begley, et al., Development and Performance of a Gas Chromatography−Time-of-Flight Mass Spectrometry Analysis for Large-Scale Nontargeted Metabolomic Studies of Human Serum. Analytical Chemistry 2009, 81, 16, 7038–7046
44. Anders Nordström, et al., Metabolomics: Moving to the Clinic. Journal of Neuroimmune Pharmacology volume 2010, 5, 4-17.
45. George Poste. Bring on the biomarkers. Nature 2011, 469, 156-157.
46. Rui Chen, et al., Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell 2012, 148(6), 1293-1307.
47. Nicola Zamboni, et al., Defining the Metabolome: Size, Flux, and Regulation. Molecular Cell 2015, 58(4), 699-706.
48. Carolina Simó, et al., Is metabolomics reachable? Different purification strategies of human colon cancer cells provide different CE-MS metabolite profiles. Electrophoresis 2011, 32(13), 1765-1777.
49. Christine Blancher, et al., SDS -PAGE and Western Blotting Techniques. Metastasis Research Protocols 2001, 57, 145-162.
50. Abdulhamid A. Al-Tubuly, SDS-PAGE and Western Blotting. Diagnostic and Therapeutic Antibodies 2000, 40, 391-405.
51. María V. Baroni, et al., Assessment of the Floral Origin of Honey by SDS-Page Immunoblot Techniques. Journal of Agricultural and Food Chemistry 2002, 50(6), 1362–1367.
52. Rudolf M Lequin. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clinical Chemistry 2005, 51(12), 2415–2418.
53. A. Voller, et al., The Detection of Viruses by Enzyme-Linked Immunosorbent Assay (ELISA). Journal of General Virology 1976, 33(1).
54. Vernon F. Kalb Jr., et al., A new spectrophotometric assay for protein in cell extracts. Analytical Biochemistry 1977, 82(2), 362-371.
55. Ammar A. Albalasmeh, et al., A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 2013, 97(2), 253-261.
56. P.K.Smith, et al., Measurement of protein using bicinchoninic acid. Analytical Biochemistry 1985, 150(1), 76-85.
57. John M. Walker. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. The Protein Protocols Handbook 2009, 11–15.
58. Rhoderick E. Brown, et al., Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical Biochemistry 1989, 180(1), 136-139.
59. Ralph J. Kessler, Darrell D. Fanestil. Interference by lipids in the determination of protein using bicinchoninic acid. Analytical Biochemistry 1986, 159(1), 138-142.
60. Nicholas J. Kruger. The Bradford Method For Protein Quantitation. The Protein Protocols Handbook 2009, 17–24.
61. Hyung-Keun Ku, et al., Interpretation of protein quantitation using the Bradford assay: Comparison with two calculation models. Analytical Biochemistry 2013, 434(1), 178-180.
62. Tsaffrir Zor, Zvi Selinger. Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry 1996, 236(2), 302-308.
63. Christian Jurinke, et al., MALDI-TOF mass spectrometry. Molecular Biotechnology 2004, 26, 147-163.
64. Inês C. Santos, et al., Applications of MALDI-TOF MS in environmental microbiology. Analyst 2016, 10.
65. Lucinda H. Cohen, et al., Small molecule analysis by MALDI mass spectrometry. Analytical and Bioanalytical Chemistry 2002, 373, 571-586.
66. Sören Schubert, et al., MALDI-TOF MS in the Microbiology Laboratory: Current Trends. Current Issues in Molecular Biology 2017, 23, 17-20.
67. Matthias Wilm. Principles of Electrospray Ionization. Molecular & Cellular Proteomics 2011, 10(7).
68. Lars Konermann, et al., Unraveling the Mechanism of Electrospray Ionization. Analytical Chemistry 2013, 85(1), 2-9.
69. Richard B. Cole. Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry 2000, 35(7), 763-772.
70. Igor V. Chernushevich, Alexander V. Loboda, Bruce A. Thomson. An introduction to quadrupole–time-of-flight mass spectrometry. Journal of Mass Spectrometry 2001, 36(8), 849-865.
71. Jae C. Schwartz, et al., A two-dimensional quadrupole ion trap mass spectrometer. Journal of the American Society for Mass Spectrometry 2002, 13, 659-669.
72. W. C. Wiley, I. H. McLaren. Time‐of‐Flight Mass Spectrometer with Improved Resolution. Review of Scientific Instruments 1955, 26(12), 1150.
73. B. A. Mamyrin. Time-of-flight mass spectrometry (concepts, achievements, and prospects). International Journal of Mass Spectrometry 2001, 206(3), 251-266.
74. Melvin B. Comisarow, Alan G. Marshall. The Early Development of Fourier Transform Ion Cyclotron Resonance (FT-ICR) Spectroscopy. Journal of Mass Spectrometry 1996, 31(6), 581-585.
75. Julia Laskin, et al., Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrometry Reviews 2003, 22(3), 158-181.
76. Mark R. Emmett, et al., Application of micro-electrospray liquid chromatography techniques to FT-ICR MS to enable high-sensitivity biological analysis. Journal of the American Society for Mass Spectrometry 1998, 9, 333-340.
77. Stephen C. Brown, et al., Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews 2005, 24(2), 223-231.
78. Richard H. Perry, R. Graham Cooks, Robert J. Noll. Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrometry Reviews 2008, 27(6), 661-699.
79. Michaela Scigelova, Alexander Makarov. Orbitrap Mass Analyzer – Overview and Applications in Proteomics. Proteomics 2006, 6(S2), 16-21.
80. Christoph Wittmann. Fluxome analysis using GC-MS. Microbial Cell Factories 2007, 6.
81. E. C. Horning, M. G. Horning. Human Metabolic Profiles Obtained by GC and GC/MS. Journal of Chromatographic Science 1971, 9(3), 129-140.
82. Lutz Alder, et al., Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrometry Reviews 2006, 25(6), 838-865.
83. John M. Halket, Daniel Waterman, Anna M. Przyborowska, Raj K. P. Patel, Paul D. Fraser, Peter M. Bramley. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany 2005, 56(410), 219–243.
84. Xin Lu, Xinjie Zhao, et al., LC–MS-based metabonomics analysis. Journal of Chromatography B 2008, 866(1-2), 64-76.
85. Chang-Kee Lim, Gwyn Lord. Current Developments in LC-MS for Pharmaceutical Analysis. Biological and Pharmaceutical Bulletin 2002, 25, 547-557.
86. Mona I. Churchwell, et al., Improving LC–MS sensitivity through increases in chromatographic performance: Comparisons of UPLC–ES/MS/MS to HPLC–ES/MS/MS. Journal of Chromatography B 2005, 825(2), 134-143.
87. Bilal Aslam, et al., Proteomics: Technologies and Their Applications. Journal of Chromatographic Science 2017, 55(2), 182–196.
88. Bruno Domon, et al., Mass Spectrometry and Protein Analysis. SCIENCE 2006, 312(5771), 212-217.
89. Georgios A. Theodoridis, et al., Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Analytica Chimica Acta 2012, 711, 7-16.
90. Jean-Luc Wolfender, et al., Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A 2015, 1382, 136-164.
91. Robert-Jan Raterink, et al., Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. TrAC Trends in Analytical Chemistry 2014, 61, 157-167.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊