|
1. English References Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Proceedings of The 1993 ACM SIGMOD International Conference on Management of Data, Washington D.C. USA, 207-216. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832-843. Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J. (2018). An Introduction to Management Science: Quantitative Approach: Cengage Learning. Bohlen, M. H., Busatto, R., & Jensen, C. S. (1998). Point-versus interval-based temporal data models. Proceedings of The 14th International Conference on Data Engineering, Orlando, FL, USA, 192-200. Chen, Y.-L., Chiang, M.-C., & Ko, M.-T. (2003). Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications, 25(3), 343-354. Chen, Y.-L., & Huang, T.-K. (2005). Discovering fuzzy time-interval sequential patterns in sequence databases. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(5), 959-972. Chen, Y.-L., & Wu, S.-Y. (2006). Mining temporal patterns from sequence database of interval-based events. Proceedings of The International Conference on Fuzzy Systems and Knowledge Discovery, Xi’an, China, 586-595. Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases. ACM SIGMOD Record, 23(2), 419-429. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-37. Gusfield, D. (1997). Algorithms on stings, trees, and sequences: Computer science and computational biology. ACM SIGACT News, 28(4), 41-60. Hu, Y.-H., Huang, T. C.-K., Yang, H.-R., & Chen, Y.-L. (2009). On mining multi-time-interval sequential patterns. Data & Knowledge Engineering, 68(10), 1112-1127. Huang, C.-K., Yang, P.-T., & Hsieh, K.-Y. (2018). Knowledge discovery of consensus and conflict interval-based temporal patterns: A novel group decision approach. Knowledge-Based Systems, 140, 201-213. Kam, P.-S., & Fu, A. W.-C. (2000). Discovering temporal patterns for interval-based events. Proceedings of The International Conference on Data Warehousing and Knowledge discovery, Berlin, Heidelberg, 317-326. Kostakis, O., & Papapetrou, P. (2017). On searching and indexing sequences of temporal intervals. Data mining and Knowledge Discovery, 31(3), 809-850. Kostakis, O., Papapetrou, P., & Hollmén, J. (2011). Artemis: Assessing the similarity of event-interval sequences. Proceedings of The Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 229-244. Lee, H. L., Padmanabhan, V., & Whang, S. (1997). The bullwhip effect in supply chains. Sloan Management Review, 38, 93-102. Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659. Papapetrou, P., Kollios, G., Sclaroff, S., & Gunopulos, D. (2009). Mining frequent arrangements of temporal intervals. Knowledge and Information Systems, 21(2), 133-171. Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. Proceedings of The International Conference on Extending Database Technology, Avignon, France, 1-17. Tan, P. N., Steinbach, M., Kumar, V., & Karpatne, A. (2019). Introduction to Data Mining: Pearson Education. Winarko, E., & Roddick, J. F. (2007). ARMADA – An algorithm for discovering richer relative temporal association rules from interval-based data. Data & Knowledge Engineering, 63(1), 76-90. Wu, S.-Y., & Chen, Y.-L. (2007). Mining nonambiguous temporal patterns for interval-based events. IEEE Transactions on Knowledge and Data Engineering, 19(6), 742-758. Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on sequence classification. ACM SIGKDD Explorations Newsletter, 12(1), 40-48. Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678. 2. Internet Reference Statementdog. (2022, March 15). 半導體產業介紹、台股上下游類股和半導體公司股價漲跌幅. Retrieved from https://statementdog.com/taiex/19-semiconductor-industry
|