跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Sieki Tefatu
研究生(外文):TEFATU, SIEKI
論文名稱:中小企業中雲端商業智能採用對業績優化的多準則決策分析—以巴布亞紐幾內亞為例
論文名稱(外文):A Multi-criteria Decision Analysis of Cloud Business Intelligence Adoption for SME Performance Optimization in Papua New Guinea
指導教授:戴敏育戴敏育引用關係
指導教授(外文):Day, Min-Yuh
口試委員:詹佳縈張光泰戴敏育
口試委員(外文):Chan, Chia-YingTruong, Quang ThaiDay, Min-Yuh
口試日期:2023-06-15
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:財務金融英語碩士 學位學程(GMBA)
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:119
中文關鍵詞:中小型企業(SMEs)雲端商業智能(Cloud BI)技術-組織-環境(TOE)模糊多準則決策分析(基於模糊的MCDA)
外文關鍵詞:Small and Medium Sized Enterprises (SMEs)Cloud Business Intelligence (Cloud BI)Technology-Organization-Environment (TOE)Fuzzy Multi-Criteria Decision Analysis (Fuzzy based MCDA)
ORCID或ResearchGate:https://orcid.org/0009-0001-2132-048X
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
中小企業中雲端商業智能採用對業績優化的多準則決策分析 —以巴布亞紐幾內亞為例 摘要

研究目的
本研究旨在基於技術、組織和環境(TOE)因素框架,以多準則決策分析(MCDA)方法,評估巴布亞紐幾內亞(PNG)中小企業(SME)業主和管理階層採用雲端商業智能(Cloud BI)的影響因素,以優化其業績功能。

研究方法
本研究使用在巴布亞紐幾內亞四個地區的50家SME終端用戶和服務提供商之間進行的在線兩兩比較訪談和模糊層級分析研究問卷評估。本研究採用戰略性的多準則決策分析(MCDA)方法來評估和確定採用雲端商業智能(Cloud BI)在SME中的影響決策領域和因素權重。首先,進行了系統性文獻回顧(SLR),以確定基於TOE框架的決策準則,據此確定了3個決策領域和9個決策因素,並將其應用於評估Cloud BI的採用。其次,結合模糊層級分析網絡過程(Fuzzy DEMATEL-based ANP)數據分析技術,用於示範影響網絡關係圖(INRM),並指定決策領域和因素之間最準確的影響權重。最後,將模糊修正的VIKOR(多標準優勢規劃)方法與影響權重相結合,評估決策領域和因素在SME業績功能方面的差異性,並確定需要改善的關鍵領域和因素,以實現SME順利過渡和採用Cloud BI以優化其業績。

研究成果
研究結果說明在採用Cloud BI方面,「組織」是最重要的決策領域,而「環境」則是最不重要但是主要的因果影響因素。在評估巴布亞紐幾內亞採用雲端商業智能工具的9個決策因素中,有4個因素被評估為在決策上具有重要程度,包括技術利益、技術可信度、高層管理支持和組織準備度。此外,我們的戰略方法顯示,政府支持、競爭壓力和商業位置是最不重要的因素,但對其他決策因素產生正向的因果影響程度,反映出巴布亞紐幾內亞SME對經濟狀態不佳、法規限制和基礎設施不足等問題的關注,這增加了採用Cloud BI過程的複雜性。本研究結果亦證明對於SME的業務增長和財務業績,雲端商業智能將非常適合。

研究限制
首先,本研究的範圍僅限於巴布亞紐幾內亞的中小企業部門。因此決策準則和策略解決方案可能不適用於其他國家的中小企業。此外,TOE評估標準是從先前的文獻中得出的,可能排除了對Cloud BI評估過程的幾個可能影響因素。因此需要進一步研究以充分了解巴布亞紐幾內亞中小企業部門,不斷變化的經濟環境中可能存在的因素的程度。

實際影響
本研究提供了一種 MCDA 方法,巴布亞紐幾內亞的中小企業可以利用該來找出最佳解決方案,以滿足其業績需求,並根據其各自的要求和環境分析決策準則中應首先改善的差距,以精確評估雲端商業智能的利用。

原創性和價值
本研究從管理的角度提供了有關巴布亞紐幾內亞雲端商業智能採用的原創觀點。

關鍵字:中小型企業(SMEs);雲端商業智能(Cloud BI);技術-組織-環境(TOE);模糊多準則決策分析(基於模糊的MCDA)


A Multi-criteria Decision Analysis of Cloud Business Intelligence Adoption for SME Performance Optimization in Papua New Guinea
ABSTRACT
Purpose
The purpose of this research study focuses purely on evaluating the influential factors amongst Small to medium enterprises (SMEs) owners’ and managers’ decision to adopt Cloud Business Intelligence (Cloud BI) in Papua New Guinea (PNG) based on Technology, Organization, and Environment (TOE) factorial framework with a Multi-Criteria Decision Analysis (MCDA) approach to optimize their performance functionality.

Design methodology and approach
This study used an online pair-wise comparison interviews and a Fuzzy DEMATEL research questionnaire assessment accomplished by distinct senior professional decision makers across an array of 50 SME end-user and service providers in the four regions of Papua New Guinea. This study utilized a strategic Multiple-Criteria Decision Analysis (MCDA) approach to evaluate and determine the influential decision areas and factors weights, upon adopting Cloud Business Intelligence (Cloud BI) in SMEs. Primarily a systematic literature review (SLR) was conducted to determine the decision criterion based on the TOE framework upon which (3) decision areas and (9) decision factors were identified and implemented to assess the adoption of Cloud BI. Secondly, a combination of (Fuzzy DEMATEL-based ANP) data analysis techniques was employed to exemplify an influence network relations map (INRM) and designate the most precise influenced weights connecting the decision area and factors. Lastly, a Fuzzy modified VIKOR (VIekriterijumsko KOmpromisno Rangiranje) method was integrated with the influential weights to evaluate the decision areas and factors disparities with respective to SME performance functions and identify the critical areas and factors that needs to be enhance for the smooth transition and adoption of Cloud Business Intelligence by SMEs to optimize their performance.

Research Findings
The study results signify that “Organization” is the most important decision area when it comes to adopting Cloud BI, whilst “Environment” is the least important but the main causal influencer. Whilst, (4) of the (9) decision factors evaluated posits a significant degree of importance on the decision to adopt cloud business intelligence tools in PNG. These vital factors entail technology benefits, technology credibility, top management support, and organization readiness. Moreover, our strategic approach indicated that government support, competitive pressure, and Business location, are the least important factors but the positive degree of causal influence factors on other decision factors for the adoption of Cloud BI reflecting PNG SMEs’ concerns about poor economic state, legal regulations, and inadequate infrastructure with high undue pressure goes to show the poor state of the business location and service linkage which adds complexity to the process of adopting Cloud BI. Our research findings also revealed that Cloud BI will be much suited for SMEs’ Business growth and financial performance.

Research Limitations
Primarily, this study’s scope is limited to the SME sector in PNG. As a result, the determined decision criterion and the strategic solution may less be beneficial to SMEs in other nations. Also, a TOE assessment criterion was derived from prior literature, which might have excluded several possible influences on the Cloud BI evaluation process. Thus, further research is required to fully comprehend the extent of probable factors involved especially with the ever-changing economic environment of PNGs SME sector.



Practical implications
This study provides a MCDA approach that SMEs in PNG can utilize to their advantage to determine the best solution to serve their performance needs according to their respective requirement and setting. A strategic approach that SMEs in PNG can use to ascertain the disparities in their key performance function to identify the best cost-effective alternatives and also analyze which gaps in the decision criterion should be improved first to precisely asses the utilization of cloud business intelligence.

Originality
This study offers novel managerial insights concerning the application of cloud business intelligence in PNG.

Keywords
Small and Medium Sized Enterprises (SMEs); Cloud Business Intelligence (Cloud BI); Technology-Organization-Environment (TOE); Fuzzy Multi-Criteria Decision Analysis (Fuzzy based MCDA)

TABLE OF CONTENTS

MASTERS THESIS VERIFICATION (i)
ACKNOWLEDGEMENTS (ii)
ABSTRACT (iii)
摘要 (vi)
TABLE OF CONTENTS (viii)
LIST OF FIGURES (x)
LIST OF TABLES (xi)
LIST OF ACRONYMS (xii)

CHAPTER 1. INTRODUCTION 1
1.1 Research Background 2
1.2 Research Problem 6
1.3 Research Purpose, Aim and Objectives 8
1.4 Proposed MCDA Model 9
1.5 Research Implication 10
1.6 Chapter Alignment 10

CHAPTER 2. LITERATURE REVIEW 11
2.1 Small and Medium-sized Enterprises (SME) 11
2.2 Cloud Business Intelligence 17
2.3 Technology - Organization - Environment (TOE) Framework 22
2.4 Fuzzy Multiple-Criteria Decision-Analysis (MCDA) 22
2.5 Systematic Literature Review (SLR) 24
2.6 Criteria for Study Selection 26
2.7 Data Extraction of Cloud BI Adoption and Influence Factors in SMEs 27
2.8 SLR Findings of Cloud BI Adoption Factors 29
2.9 Factors Extraction of Cloud BI Adoption and Influence Factors in SMEs 33

CHAPTER 3. RESEARCH FRAMEWORK 35
3.1 Research Framework and Variables for Assessing Cloud BI Adoption 35
3.2 Technological Factors 37
3.3 Organizational Factors 38
3.4 Environmental Factors 40
3.5 SME Performance Functions 42
3.6 Summary of Research Questions 43

CHAPTER 4. RESEARCH METHODOLOGY 45
4.1 The Fuzzy Multi-Criteria Decision Analysis 45
4.2 Fuzzy Set Theory 47
4.3 Fuzzy DEMATEL - based ANP Method 50
4.4 Fuzzy Modified VIKOR Method 58

CHAPTER 5. EMPIRICAL CASE STUDY ANALYSIS 64
5.1 Data Collection Analysis 64
5.2 Results Analysis 67
5.3 Comparison Analysis of Decision Areas 69
5.4 Comparison Analysis of Decision Factors 70
5.5 Influential Network Relationship Map (INRM 71
5.6 Decision Area Inter-Relationship Analysis 74
5.7 Decision Factors Inter-Relationship Analysis 76
5.8 Influential weights of Decision Criteria’s 79
5.9 SMEs Performance Function Analysis 81
5.10 Decision-Criteria Optimization and Compromise Analysis 83
5.11 SME Key Performance Function Gap Evaluation of Cloud BI 88

CHAPTER 6. CONCLUSION 92
6.1 Research Contribution 93
6.2 Managerial Implication 93
6.3 Research Limitation and Future Work 94

REFFERENCE 95
APPENDIX A: FUZZY AVERAGE RELATION MATRIX 105
APPENDIX B: FUZZY AVERAGE DECISION MATRIX 106
APPENDIX C: TOTAL DECISION MATRIX 106




REFFERENCE

Aazagreyir, P., Appiahene, P., Appiah, O., & Boateng, S. T. (2023). A Novel Hesitant Intuitionistic Fuzzy DEMATEL-TOPSIS Model for Cloud Service Provider Selection. Available at SSRN 4384253.

Abdullah, L. A. Z. I. M., & Lim, H. A. N. N. I. (2018). A decision-making method with triangular fuzzy numbers for unraveling the criteria of e-commerce. WSEAS Transactions on Computers, 17, 126-135.

Abe, M., & Proksch, M. (2017). Supporting participation of Asia-Pacific SMEs in global value chains. Journal of Korea Trade, 21(2), 86-106.

Adeyelure, T. S., Kalema, B. M., & Bwalya, K. J. (2018). Deployment factors for mobile business intelligence in developing countries small and medium enterprises. African Journal of Science, Technology, Innovation and Development, 10(6), 715-723.

Agostini, A. (2013). Winning Customers in the Era of Cloud Business Intelligence: Key Adoption Factors from a Small and Medium Enterprise perspective. Final Dissertation in Technical Project 15 ECTS, Halmstad.

Agostino, A., Søilen, K. S., & Gerritsen, B. (2013). Cloud solution in Business Intelligence for SMEs–vendor and customer perspectives. Journal of Intelligence Studies in Business, 3(3).

Alabool, H., Kamil, A., Arshad, N., & Alarabiat, D. (2018). Cloud service evaluation method-based Multi-Criteria Decision-Making: A systematic literature review. Journal of Systems and Software, 139, 161-188.

Alharbi, F., Atkins, A., & Stanier, C. (2016). Understanding the determinants of Cloud Computing adoption in Saudi healthcare organizations. Complex & Intelligent Systems, 2, 155-171.

Al Aqrabi, H., Liu, L., Hill, R., & Antonopoulos, N. (2014, August). A multi-layer hierarchical inter-cloud connectivity model for sequential packet inspection of tenant sessions accessing BI as a service. In 2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS) (pp. 498-505). IEEE.

Ali, O., Soar, J., Yong, J., & McClymont, H. (2015). Exploratory study to investigate the factors influencing the adoption of cloud computing in Australian regional municipal governments. Journal of Art Media and Technology, 1(1), 1-13.

Ali, S., Baseer, S., Abbasi, I. A., Alouffi, B., Alosaimi, W., & Huang, J. (2022). Analyzing the interactions among factors affecting cloud adoption for software testing: a two-stage ISM-ANN approach. Soft Computing, 26(16), 8047-8075.

Almishal, A., & Youssef, A. E. (2014). Cloud service providers: A comparative study. International journal of computer applications & information technology, 5(II).

Alshamaila, Y., Papagiannidis, S., & Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi‐perspective framework. Journal of enterprise information management. 26(3), 250–275.

Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2018). Towards Industry 4.0: Mapping digital technologies for supply chain management-marketing integration. Business process management journal, 25(2), 323-346.

Arjomandi, M.A., Dinmohammadi, F., Mosallanezhad, B., & Shafiee, M. (2021). A fuzzy DEMATEL-ANP-VIKOR analytical model for maintenance strategy selection of safety critical assets. Advances in Mechanical Engineering, 13(4), 1-21.

Asian Development Bank (ADB), (2022). “Financing Small and Medium-sized Enterprises in Asia and the Pacific,” Credit guarantee schemes. SKU: TCS220030-2; ISBN:978-92-9269-359-6; 1-106

Asian Development Bank (ADB), (2014). The Challenges of Doing Business in Papua New Guinea. Manila: Asian Development Bank.

Asian Development Bank (ADB), (2012). Papua New Guinea: Critical Development Constraints. Manila: Asian Development Bank

Awa, H. O., Ojiabo Ukoha & Bartholomew C. Emecheta. (2016). Using T-O-E theoretical framework to study the adoption of ERP solution, Cogent Business & Management, 3:1,1196571

Baker, J. (2012). The technology–organization–environment framework. Information Systems Theory: Explaining and Predicting Our Digital Society, Vol. 1, 231-245.

Baker, O., & Kaur, P. (2020, November). The adoption of cloud computing CRM in SME’s, Southland, New Zealand. In 2020 IEEE Conference on Open Systems (ICOS) (pp. 1-6). IEEE.

Balachandran, B. M., & Prasad, S. (2017). Challenges and benefits of deploying big data analytics in the cloud for business intelligence. Procedia Computer Science, 112, 1112-1122.

Bange, C., & Eckerson, W. (2017). BI and Data Management in the Cloud: Issues and Trends. BARC Research Study.

Banks, W. (2008). Linguistic variables: Clear thinking with fuzzy logic. IEEE Toronto Section.

Baykasoğlu, A., & Gölcük, İ. (2015). Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS. Information Sciences, 301, 75-98.

Bhatiasevi, V., & Naglis, M. (2020). Elucidating the determinants of business intelligence adoption and organizational performance. Information Development, 36(1), 78–96.

Bigliardi, B., Colacino, P., & Dormio, A. I. (2011). Innovative characteristics of small and medium enterprises. Journal of technology management & innovation, 6(2), 83-93.

Boonsiritomachai, W., McGrath, G. M., & Burgess, S. (2016). Exploring business intelligence and its depth of maturity in Thai SMEs. Cogent Business & Management, 3(1), 1220663.

Borgman, H. P., Bahli, B., Heier, H., & Schewski, F. (2013, January). Cloudrise: exploring cloud computing adoption and governance with the TOE framework. In 2013 46th Hawaii international conference on system sciences (pp. 4425-4435). IEEE.

Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4.

Camarinha-Matos, Luis. M., Xu, L., & Afsarmanesh, H. (Eds.). (2012). Collaborative Networks in the Internet of Services: 13th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2012, Bournemouth, UK, October 1-3, 2012, Proceedings (Vol. 380). Springer.

Chandra, B., & Iyer, M. (2010). BI in a cloud: Defining the architecture for quick wins. SETLabs Briefing, 8(1), 39-44.
Chang, S. C., Chang, H. H., & Lu, M. T. (2021). Evaluating industry 4.0 technology application in SMES: Using a Hybrid MCDM Approach. Mathematics, 9(4), 414.

Chen, N., Christensen, L., Gallagher, K., Mate, R., & Rafert, G. (2016). Global economic impacts associated with artificial intelligence. Analysis Group, 1-23.

Chiu, W. Y., Tzeng, G. H., & Li, H. L. (2013). A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Knowledge-Based Systems, 37, 48-61.

Conz, E., Denicolai, S., & Zucchella, A. (2017). The resilience strategies of SMEs in mature clusters. Journal of Enterprising Communities: People and Places in the Global Economy. Vol. 11 No. 1, pp. 186-210

Demirkan, H., Spohrer, J. C., & Welser, J. J. (2016). Digital innovation and strategic transformation. It Professional, 18(6), 14-18.

Denicolai, S., Zucchella, A., & Magnani, G. (2021). Internationalization, digitalization, and sustainability: Are SMEs ready? A survey on synergies and substituting effects among growth paths. Technological Forecasting and Social Change, 166, 120650.

Department of National Planning and Monitoring, 2010. Papua New Guinea Development Strategic Plan 2010–2030. Port Moresby

Dresner Advisory Services, LLC. (2020) Cloud computing and Business Intelligence Market Study. pp (1-101)

ElMalah, K., & Nasr, M. (2019). Cloud business intelligence. International Journal of Advanced Networking and Applications, 10(6), 4120-4124.

Ferro, D. C. R. (2019). Understanding the adoption of cloud BI in SMES (Doctoral dissertation).

Furht, B. (2010). Cloud computing fundamentals. Handbook of cloud computing, 3-19. Springer US.

Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL battelle institute. Geneva research centre.

Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of enterprise information management, 28(1), 107–130Gartner Glossary (2014).

Business Intelligence (BI). Available: http://www.gartner.com/it-glossary/business-intelligence-bi

Gartner Glossary (2014). Business Intelligence (BI). Available: http://www.gartner.com/it-glossary/business-intelligence-biGherghina, Ș. C.,

Botezatu, M. A., Hosszu, A., & Simionescu, L. N. (2020). Small and medium-sized enterprises (SMEs): The engine of economic growth through investments and innovation. Sustainability, 12(1), 347.

Gavrea, C., Ilies, L., & Stegerean, R. (2011). Determinants of organizational performance: The case of Romania. Management & Marketing, 6(2).

Gillham, J., Rimmington, L., Dance, H., Verweij, G., Rao, A., Roberts, K. B., & Paich, M. (2018). The macroeconomic impact of artificial intelligence. PwC Report-PricewaterhouseCoopers. -2018.

Gölcük, İ., & Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346-366.

Grand View Research (2019). Business Intelligence Software Market Size, Share & Trends Analysis Report by Technology, By Function (Executive Management, Finance), 2019 – 2025

Gupta, C., Fernandez-Crehuet, J. M., & Gupta, V. (2022). A novel value-based multi-criteria decision-making approach to evaluate new technology adoption in SMEs. PeerJ Computer Science, 8, e1184.

Gupta, P., Seetharaman, A., & Raj, J. R. (2013). The usage and adoption of cloud computing by small and medium businesses. International journal of information management, 33(5), 861-874.

Gurjar, Y. S., & Rathore, V. S. (2013). Cloud business intelligence–is what business need today. International Journal of Recent Technology and Engineering, 1(6), 81-86.

Gutierrez, A., Boukrami, E., & Lumsden, R. (2015). Technological, organizational and environmental factors influencing managers’ decision to adopt cloud computing in the UK. Journal of enterprise information management, 28, 788-807

Habjan, A., & Popovic, A. (2007, July). Achieving business process change with improved business intelligence systems: A case of Slovenian company. In 7th WSEAS International Conference on Applied Computer Science, Venice, Italy (pp. 346-351).

Haddad, M. I., Williams, I. A., Hammoud, M. S., & Dwyer, R. J. (2020). Strategies for implementing innovation in small and medium-sized enterprises. World journal of entrepreneurship, management and sustainable development, 16(1), 12-29.

Hamedi, H., & Mehdiabadi, A. (2020). Entrepreneurship resilience and Iranian organizations: application of the fuzzy DANP technique. Asia Pacific Journal of Innovation and Entrepreneurship, 14(3), 231-247.

Hamidinava, F., Ebrahimy, A., Samiee, R., & Didehkhani, H. (2021). A model of business intelligence on cloud for managing SMEs in COVID-19 pandemic (Case: Iranian SMEs). Kybernetes, (ahead-of-print).

Hassan, H., Nasir, M. H. M., Khairudin, N., & Adon, I. (2017). Factors influencing cloud computing adoption in small medium enterprises. Journal of Information and Communication Technology, 16(1), 21-41.

Hoang, C. C., & NGOC, B. H. (2019). The relationship between innovation capability and firm's performance in electronic companies, Vietnam. The Journal of Asian Finance, Economics and Business, 6(3), 295-304.

Ilieva, G., Yankova, T., Hadjieva, V., Doneva, R., & Totkov, G. (2020). Cloud service selection as a fuzzy multi-criteria problem. TEM Journal, 9(2), 484.

Indriasari, E., Wayan, S., Gaol, F. L., Trisetyarso, A., Saleh Abbas, B., & Ho
Kang, C. (2019). Adoption of cloud business intelligence in Indonesia’s financial services sector. In Intelligent Information and Database Systems: 11th Asian Conference, ACIIDS 2019, Yogyakarta, Indonesia, April 8–11, 2019, Proceedings, Part I 11 (pp. 520-529). Springer International Publishing.

Inyang, B. J. (2013). Defining the role engagement of small and medium-sized enterprises (SMEs) in corporate social responsibility (CSR). International business research, 6(5), 123.

Isma'ili, A., Li, M., Shen, J., & He, Q. (2016). Cloud computing adoption determinants: an analysis of Australian SMEs.

Kasem, M., & Hassanein, E. E. (2014). Cloud business intelligence survey. International Journal of Computer Applications, 90(1), 23-28.

Khayer, A., Jahan, N., Hossain, M. N., & Hossain, M. Y. (2021). The adoption of cloud computing in small and medium enterprises: a developing country perspective. VINE Journal of Information and Knowledge Management Systems, 51(1), 64-91.

Kora, P. (2004). Small and medium enterprises in Papua New Guinea: performance and growth prospects.

Lacerda, T. C., & von Wangenheim, C. G. (2018). Systematic literature review of usability capability/maturity models. Computer Standards & Interfaces, 55, 95-105.

Lateef, M., & Keikhosrokiani, P. (2022). Predicting Critical success factors of business intelligence implementation for improving SMEs’ performances: a case study of Lagos State, Nigeria. Journal of the Knowledge Economy, 1-26.

Lawson, B., & Samson, D. (2001). Developing innovation capability in organizations: a dynamic capabilities approach. International journal of innovation management, 5(03), 377-400.

Lin, R. J. (2013). Using fuzzy DEMATEL to evaluate the green supply chain management practices. Journal of cleaner production, 40, 32-39.

Lu, M. T., Hu, S. K., Huang, L. H., & Tzeng, G. H. (2015). Evaluating the implementation of business-to-business m-commerce by SMEs based on a new hybrid MADM model. Management Decision.

Luo, P., Wang, H., & Yang, Z. (2016). Investment and financing for SMEs with a partial guarantee and jump risk. European Journal of Operational Research, 249(3), 1161-1168.

Makena, J. N. (2013). Factors that affect cloud computing adoption by small and medium enterprises in Kenya. International Journal of Computer Applications Technology and Research, 2(5), 517-521.

Manyika, J., Lund, S., & Bughin, J. (2016). Digital Globalization: The New Era Global Flows. McKinsey Global Institute, pp156.

Mardani, A., Zavadskas, E. K., Govindan, K., Amat Senin, A., & Jusoh, A. (2016). VIKOR technique: A systematic review of the state-of-the-art literature on methodologies and applications. Sustainability, 8(1), 37.

Markets and Markets (2020). Cloud Analytics Market by Solution (Analytics Solutions, Hosted Data Warehouse Solutions, and Cloud BI Tools), Deployment Mode (Public Cloud, Private Cloud, and Hybrid Cloud), Organization Size, Industry Vertical, and Region – Global Forecast to 2025

Masood, T., & Egger, J. (2019). Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robotics and Computer-Integrated Manufacturing, 58, 181-195.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing

Ming, C. F., On, C. K., Rayner, A., Guan, T. T., & Patricia, A. (2018). The determinant factors affecting cloud computing adoption by small and medium enterprises (SMEs) in Sabah, Malaysia. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(3-2), 83-88.

Ministry of Trade, Commerce and Industry. (2016). Papua New Guinea Small and Medium Enterprise Policy 2016. Port Moresby:

Mishra, V., & Smyth, R. L. (2016). A scoping study to provide an assessment of SME policy priority areas for Papua New Guinea. National Research Institute.

Muriithi, S. M. (2017). African small and medium enterprises (SMEs) contributions, challenges and solutions., 5, 1.

Musaad O, A. S., Zhuo, Z., Musaad O, A. O., Ali Siyal, Z., Hashmi, H., & Shah, S. A. A. (2020). A fuzzy multi-criteria analysis of barriers and policy strategies for small and medium enterprises to adopt green innovation. Symmetry, 12(1), 116.

Myslimi, G., & Kaçani, K. (2016). Impact of SMEs in economic growth in Albania. European Journal of Sustainable Development, 5(3), 151-151.

Narongou, D., & Sun, Z. (2022). Applying intelligent big data analytics in a smart airport business: Value, adoption, and challenges. In Handbook of research on foundations and applications of intelligent business analytics (pp. 216-237). IGI Global.

Ndiaye, N., Razak, L. A., Nagayev, R., & Ng, A. (2018). Demystifying small and medium enterprises’(SMEs) performance in emerging and developing economies. Borsa Istanbul Review, 18(4), 269-281.

Obi, J., Ibidunni, A. S., Tolulope, A., Olokundun, M. A., Amaihian, A. B., Borishade, T. T., & Fred, P. (2018). Contribution of small and medium enterprises to economic development: Evidence from a transiting economy. Data in brief, 18, 835-839.

Octave (2023). GNU Octave (Version 8.2.0) [Computer Software]. https://octave.org/

OECD (2021), The Digital Transformation of SMEs, OECD Studies on SMEs and Entrepreneurship, OECD Publishing, Paris

Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & management, 51(5), 497-510.

Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European journal of operational research, 178(2), 514-529.

Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455.

Opricovic, S., & Tzeng, G. H. (2003). Fuzzy multicriteria model for post-earthquake land-use planning. Natural hazards review, 4(2), 59-64.

Ongowarsito, H., Prabowo, H., M., & Gaol, F.L. (2021). Priority Factors for the Adoption of Cloud ERP Based on the Perspective of Consultants and SMEs. International Journal of Emerging Technology and Advanced Engineering.11. 126-135.

Online Output MCDM (2023). Fuzzy DEMATEL Software (Online Software). https://onlineoutput.com/fuzzy-dematel-software/

Online Output MCDM (2023). Fuzzy VIKOR Software (Online Software). https://onlineoutput.com/fuzzy-vikor-software/

Owusu, A., Broni, F. E., Penu, O. K. A., & Boateng, R. (2020). Exploring the critical success factors for cloud BI adoption among Ghanaian SMEs.

Ozdemir, Y. S. (2022). A Spherical Fuzzy Multi-Criteria Decision-Making Model for Industry 4.0 Performance Measurement. Axioms, 11(7), 325.

Popa, S., Soto-Acosta, P., & Martinez-Conesa, I. (2017). Antecedents, moderators, and outcomes of innovation climate and open innovation: An empirical study in SMEs. Technological Forecasting and Social Change, 118, 134-142.

Popescu, N. E. (2014). Entrepreneurship and SMEs innovation in Romania. Procedia Economics and Finance, 16, 512-520.

Puklavec, B., Oliveira, T., & Popovič, A. (2018). Understanding the determinants of business intelligence system adoption stages: An empirical study of SMEs. Industrial Management & Data Systems, 118 (1), 236–261.

Qadeer, A., Waqar Malik, A., Ur Rahman, A., Mian Muhammad, H., & Ahmad, A. (2020). Virtual infrastructure orchestration for cloud service deployment. The Computer Journal, 63(2), 295-307.

Rajapathirana, R. J., & Hui, Y. (2018). Relationship between innovation capability, innovation type, and firm performance. Journal of Innovation & Knowledge, 3(1), 44-55.

Raut, R. D., Gardas, B. B., Narkhede, B. E., & Narwane, V. S. (2019). To investigate the determinants of cloud computing adoption in the manufacturing micro, small and medium enterprises: A DEMATEL-based approach. Benchmarking: An International Journal, 26(3), 990-1019.

Rath, A., Kumar, S., Mohapatra, S., & Thakurta, R. (2012, December). Decision points for adoption cloud computing in small, medium enterprises (SMEs). In 2012 International Conference for Internet Technology and Secured Transactions (pp. 688-691). IEEE.

Rumanti, A. A., Rizana, A. F., Septiningrum, L., Reynaldo, R., & Isnaini, M. M. R. (2022). Innovation capability and open innovation for small and medium enterprises (SMEs) performance: Response in dealing with the COVID-19 pandemic. Sustainability, 14(10), 5874.

Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922, No. 2). Pittsburgh: RWS publications.

Sahandi, R., Alkhalil, A., & Opara-Martins, J. (2012). SMEs’ perception of cloud computing: Potential and security. In Collaborative Networks in the Internet of Services: 13th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2012, Bournemouth, UK, October 1-3, 2012. Proceedings 13 (pp. 186-195). Springer Berlin Heidelberg.

Salisu, I., Bin Mohd Sappri, M., & Bin Omar, M. F. (2021). The adoption of business intelligence systems in small and medium enterprises in the healthcare sector: A systematic literature review. Cogent Business & Management, 8(1), 1935663.

Sang, G., Xu, L., & de Vrieze, P. T. (2016). Implementing a Business Intelligence System for small and medium-sized enterprises, (734599), 1–13.

Saunila, M. (2014). Innovation capability for SME success: perspectives of financial and operational performance. Journal of Advances in Management Research, 11(2), 163-175.

Senarathna, I., Wilkin, C., Warren, M., Yeoh, W., & Salzman, S. (2018). Factors that influence adoption of cloud computing: An empirical study of Australian SMEs. Australasian Journal of Information Systems, 22.

Skafi, M., Yunis, M. M., & Zekri, A. (2020). Factors influencing SMEs’ adoption of cloud computing services in Lebanon: An empirical analysis using TOE and contextual theory. IEEE Access, 8, 79169-79181.

Sobir, R. (2018). Micro-, Small and Medium-sized Enterprises (MSMEs) and their role in achieving the Sustainable Development Goals. New York: United Nations.

Strange, R., & Zucchella, A. (2017). Industry 4.0, global value chains and international business. Multinational Business Review, 25(3), 174-184.

Tehrani, S. R., & Shirazi, F. (2014). Factors influencing the adoption of cloud computing by small and medium size enterprises (SMEs). In Human Interface and the Management of Information. Information and Knowledge in Applications and Services: 16th International Conference, HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014. Proceedings, Part II 16 (pp. 631-642). Springer International Publishing.

Toader, E. A. (2015). Using Cloud Business Intelligence in competency assessment of IT professionals. Database Systems Journal, 6(1), 33-43.

Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation. Lexington books.

Trigueros-Preciado, S., Pérez-González, D., & Solana-González, P. (2013). Cloud computing in industrial SMEs: identification of the barriers to its adoption and effects of its application. Electronic Markets, 23, 105-114.

Truong, D. (2010). How cloud computing enhances competitive advantages: A research model for small businesses. The Business Review, Cambridge, 15(1), 59-65.

Trieu, V. H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111-124.

United Nation (2015), Digital development Report of the Secretary-General: Commission on Science and Technology for Development Eighteenth session UN Publishing,

Uppala, A. K., Ranka, R., Thakkar, J. J., Kumar, M. V., & Agrawal, S. (2017). Selection of green suppliers based on GSCM practices: using fuzzy MCDM approach in an electronics company. In Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making (pp. 355-375). IGI Global.

Wirtz, B. W. (2022). Artificial Intelligence, Big Data, Cloud Computing, and Internet of Things. In Digital Government: Strategy, Government Models and Technology (pp. 175-245). Cham: Springer International Publishing.

World Bank national accounts data, and OECD National Accounts data files. (2022)
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?end=2021&locations=FJ-MY-PG&start=1975&view=chart

World Bank. (2018). Small and medium enterprises (SMES) finance improving SMEs’ access to finance and finding innovative solutions to unlock sources of capital. Retrieved March 26, 2020.

Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of planning education and research, 39(1), 93-112.

Yang, J. L., Chiu, H. N., Tzeng, G. H., & Yeh, R. H. (2008). Vendor selection by integrated fuzzy MCDM techniques with independent and interdependent relationships. Information Sciences, 178(21), 4166-4183.

Yadav, R., & Mahara, T. (2019). Factors affecting e-commerce adoption by handicraft SMEs of India. Journal of Electronic Commerce in Organizations (JECO), 17(4), 44-57.

Yalcin, A. S., Kilic, H. S., & Delen, D. (2022). The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technological Forecasting and Social Change, 174, 121193.

Yazdani, A. A., Keramati, A., Turetken, O., & Palanichamy, Y. (2023). Evaluation of cloud computing risks using an integrated fuzzy-ANP and FMEA approaches. International Journal of Applied Decision Sciences, 16(2), 131-164.

Yeboah-Boateng, E. O., & Essandoh, K. A. (2014). Factors influencing the adoption of cloud computing by small and medium enterprises in developing economies. International Journal of Emerging Science and Engineering, 2(4), 13-20.

Yoo, S. K., & Kim, B. Y. (2018). A decision-making model for adopting a cloud computing system. Sustainability, 10(8), 2952.

Yoshino, N., & Taghizadeh Hesary, F. (2016). Major challenges facing small and medium-sized enterprises in Asia and solutions for mitigating them. ADBI Working Paper 564.Tokyo: Asian Development Bank Institute.

Yoshino, N., & Taghizadeh-Hesary, F. (2019). Optimal credit guarantee ratio for small and medium-sized enterprises’ financing: Evidence from Asia. Economic Analysis and Policy, 62, 342-356.

Youssef, A. E., & Mostafa, A. M. (2019). Critical decision-making on cloud computing adoption in organizations based on augmented force field analysis. IEEE Access, 7, 167229-167239.

Zadeh, L. A. (1965). Zadeh, fuzzy sets. Inform Control, 8, 338-353.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top