|
REFFERENCE
Aazagreyir, P., Appiahene, P., Appiah, O., & Boateng, S. T. (2023). A Novel Hesitant Intuitionistic Fuzzy DEMATEL-TOPSIS Model for Cloud Service Provider Selection. Available at SSRN 4384253.
Abdullah, L. A. Z. I. M., & Lim, H. A. N. N. I. (2018). A decision-making method with triangular fuzzy numbers for unraveling the criteria of e-commerce. WSEAS Transactions on Computers, 17, 126-135.
Abe, M., & Proksch, M. (2017). Supporting participation of Asia-Pacific SMEs in global value chains. Journal of Korea Trade, 21(2), 86-106.
Adeyelure, T. S., Kalema, B. M., & Bwalya, K. J. (2018). Deployment factors for mobile business intelligence in developing countries small and medium enterprises. African Journal of Science, Technology, Innovation and Development, 10(6), 715-723.
Agostini, A. (2013). Winning Customers in the Era of Cloud Business Intelligence: Key Adoption Factors from a Small and Medium Enterprise perspective. Final Dissertation in Technical Project 15 ECTS, Halmstad.
Agostino, A., Søilen, K. S., & Gerritsen, B. (2013). Cloud solution in Business Intelligence for SMEs–vendor and customer perspectives. Journal of Intelligence Studies in Business, 3(3).
Alabool, H., Kamil, A., Arshad, N., & Alarabiat, D. (2018). Cloud service evaluation method-based Multi-Criteria Decision-Making: A systematic literature review. Journal of Systems and Software, 139, 161-188.
Alharbi, F., Atkins, A., & Stanier, C. (2016). Understanding the determinants of Cloud Computing adoption in Saudi healthcare organizations. Complex & Intelligent Systems, 2, 155-171.
Al Aqrabi, H., Liu, L., Hill, R., & Antonopoulos, N. (2014, August). A multi-layer hierarchical inter-cloud connectivity model for sequential packet inspection of tenant sessions accessing BI as a service. In 2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS) (pp. 498-505). IEEE.
Ali, O., Soar, J., Yong, J., & McClymont, H. (2015). Exploratory study to investigate the factors influencing the adoption of cloud computing in Australian regional municipal governments. Journal of Art Media and Technology, 1(1), 1-13.
Ali, S., Baseer, S., Abbasi, I. A., Alouffi, B., Alosaimi, W., & Huang, J. (2022). Analyzing the interactions among factors affecting cloud adoption for software testing: a two-stage ISM-ANN approach. Soft Computing, 26(16), 8047-8075.
Almishal, A., & Youssef, A. E. (2014). Cloud service providers: A comparative study. International journal of computer applications & information technology, 5(II).
Alshamaila, Y., Papagiannidis, S., & Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi‐perspective framework. Journal of enterprise information management. 26(3), 250–275.
Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2018). Towards Industry 4.0: Mapping digital technologies for supply chain management-marketing integration. Business process management journal, 25(2), 323-346.
Arjomandi, M.A., Dinmohammadi, F., Mosallanezhad, B., & Shafiee, M. (2021). A fuzzy DEMATEL-ANP-VIKOR analytical model for maintenance strategy selection of safety critical assets. Advances in Mechanical Engineering, 13(4), 1-21.
Asian Development Bank (ADB), (2022). “Financing Small and Medium-sized Enterprises in Asia and the Pacific,” Credit guarantee schemes. SKU: TCS220030-2; ISBN:978-92-9269-359-6; 1-106
Asian Development Bank (ADB), (2014). The Challenges of Doing Business in Papua New Guinea. Manila: Asian Development Bank.
Asian Development Bank (ADB), (2012). Papua New Guinea: Critical Development Constraints. Manila: Asian Development Bank
Awa, H. O., Ojiabo Ukoha & Bartholomew C. Emecheta. (2016). Using T-O-E theoretical framework to study the adoption of ERP solution, Cogent Business & Management, 3:1,1196571
Baker, J. (2012). The technology–organization–environment framework. Information Systems Theory: Explaining and Predicting Our Digital Society, Vol. 1, 231-245.
Baker, O., & Kaur, P. (2020, November). The adoption of cloud computing CRM in SME’s, Southland, New Zealand. In 2020 IEEE Conference on Open Systems (ICOS) (pp. 1-6). IEEE.
Balachandran, B. M., & Prasad, S. (2017). Challenges and benefits of deploying big data analytics in the cloud for business intelligence. Procedia Computer Science, 112, 1112-1122.
Bange, C., & Eckerson, W. (2017). BI and Data Management in the Cloud: Issues and Trends. BARC Research Study.
Banks, W. (2008). Linguistic variables: Clear thinking with fuzzy logic. IEEE Toronto Section.
Baykasoğlu, A., & Gölcük, İ. (2015). Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS. Information Sciences, 301, 75-98.
Bhatiasevi, V., & Naglis, M. (2020). Elucidating the determinants of business intelligence adoption and organizational performance. Information Development, 36(1), 78–96.
Bigliardi, B., Colacino, P., & Dormio, A. I. (2011). Innovative characteristics of small and medium enterprises. Journal of technology management & innovation, 6(2), 83-93.
Boonsiritomachai, W., McGrath, G. M., & Burgess, S. (2016). Exploring business intelligence and its depth of maturity in Thai SMEs. Cogent Business & Management, 3(1), 1220663.
Borgman, H. P., Bahli, B., Heier, H., & Schewski, F. (2013, January). Cloudrise: exploring cloud computing adoption and governance with the TOE framework. In 2013 46th Hawaii international conference on system sciences (pp. 4425-4435). IEEE.
Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute, 4.
Camarinha-Matos, Luis. M., Xu, L., & Afsarmanesh, H. (Eds.). (2012). Collaborative Networks in the Internet of Services: 13th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2012, Bournemouth, UK, October 1-3, 2012, Proceedings (Vol. 380). Springer.
Chandra, B., & Iyer, M. (2010). BI in a cloud: Defining the architecture for quick wins. SETLabs Briefing, 8(1), 39-44. Chang, S. C., Chang, H. H., & Lu, M. T. (2021). Evaluating industry 4.0 technology application in SMES: Using a Hybrid MCDM Approach. Mathematics, 9(4), 414.
Chen, N., Christensen, L., Gallagher, K., Mate, R., & Rafert, G. (2016). Global economic impacts associated with artificial intelligence. Analysis Group, 1-23.
Chiu, W. Y., Tzeng, G. H., & Li, H. L. (2013). A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Knowledge-Based Systems, 37, 48-61.
Conz, E., Denicolai, S., & Zucchella, A. (2017). The resilience strategies of SMEs in mature clusters. Journal of Enterprising Communities: People and Places in the Global Economy. Vol. 11 No. 1, pp. 186-210
Demirkan, H., Spohrer, J. C., & Welser, J. J. (2016). Digital innovation and strategic transformation. It Professional, 18(6), 14-18.
Denicolai, S., Zucchella, A., & Magnani, G. (2021). Internationalization, digitalization, and sustainability: Are SMEs ready? A survey on synergies and substituting effects among growth paths. Technological Forecasting and Social Change, 166, 120650.
Department of National Planning and Monitoring, 2010. Papua New Guinea Development Strategic Plan 2010–2030. Port Moresby
Dresner Advisory Services, LLC. (2020) Cloud computing and Business Intelligence Market Study. pp (1-101)
ElMalah, K., & Nasr, M. (2019). Cloud business intelligence. International Journal of Advanced Networking and Applications, 10(6), 4120-4124.
Ferro, D. C. R. (2019). Understanding the adoption of cloud BI in SMES (Doctoral dissertation).
Furht, B. (2010). Cloud computing fundamentals. Handbook of cloud computing, 3-19. Springer US.
Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL battelle institute. Geneva research centre.
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of enterprise information management, 28(1), 107–130Gartner Glossary (2014).
Business Intelligence (BI). Available: http://www.gartner.com/it-glossary/business-intelligence-bi
Gartner Glossary (2014). Business Intelligence (BI). Available: http://www.gartner.com/it-glossary/business-intelligence-biGherghina, Ș. C.,
Botezatu, M. A., Hosszu, A., & Simionescu, L. N. (2020). Small and medium-sized enterprises (SMEs): The engine of economic growth through investments and innovation. Sustainability, 12(1), 347.
Gavrea, C., Ilies, L., & Stegerean, R. (2011). Determinants of organizational performance: The case of Romania. Management & Marketing, 6(2).
Gillham, J., Rimmington, L., Dance, H., Verweij, G., Rao, A., Roberts, K. B., & Paich, M. (2018). The macroeconomic impact of artificial intelligence. PwC Report-PricewaterhouseCoopers. -2018.
Gölcük, İ., & Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346-366.
Grand View Research (2019). Business Intelligence Software Market Size, Share & Trends Analysis Report by Technology, By Function (Executive Management, Finance), 2019 – 2025
Gupta, C., Fernandez-Crehuet, J. M., & Gupta, V. (2022). A novel value-based multi-criteria decision-making approach to evaluate new technology adoption in SMEs. PeerJ Computer Science, 8, e1184.
Gupta, P., Seetharaman, A., & Raj, J. R. (2013). The usage and adoption of cloud computing by small and medium businesses. International journal of information management, 33(5), 861-874.
Gurjar, Y. S., & Rathore, V. S. (2013). Cloud business intelligence–is what business need today. International Journal of Recent Technology and Engineering, 1(6), 81-86.
Gutierrez, A., Boukrami, E., & Lumsden, R. (2015). Technological, organizational and environmental factors influencing managers’ decision to adopt cloud computing in the UK. Journal of enterprise information management, 28, 788-807
Habjan, A., & Popovic, A. (2007, July). Achieving business process change with improved business intelligence systems: A case of Slovenian company. In 7th WSEAS International Conference on Applied Computer Science, Venice, Italy (pp. 346-351).
Haddad, M. I., Williams, I. A., Hammoud, M. S., & Dwyer, R. J. (2020). Strategies for implementing innovation in small and medium-sized enterprises. World journal of entrepreneurship, management and sustainable development, 16(1), 12-29.
Hamedi, H., & Mehdiabadi, A. (2020). Entrepreneurship resilience and Iranian organizations: application of the fuzzy DANP technique. Asia Pacific Journal of Innovation and Entrepreneurship, 14(3), 231-247.
Hamidinava, F., Ebrahimy, A., Samiee, R., & Didehkhani, H. (2021). A model of business intelligence on cloud for managing SMEs in COVID-19 pandemic (Case: Iranian SMEs). Kybernetes, (ahead-of-print).
Hassan, H., Nasir, M. H. M., Khairudin, N., & Adon, I. (2017). Factors influencing cloud computing adoption in small medium enterprises. Journal of Information and Communication Technology, 16(1), 21-41.
Hoang, C. C., & NGOC, B. H. (2019). The relationship between innovation capability and firm's performance in electronic companies, Vietnam. The Journal of Asian Finance, Economics and Business, 6(3), 295-304.
Ilieva, G., Yankova, T., Hadjieva, V., Doneva, R., & Totkov, G. (2020). Cloud service selection as a fuzzy multi-criteria problem. TEM Journal, 9(2), 484.
Indriasari, E., Wayan, S., Gaol, F. L., Trisetyarso, A., Saleh Abbas, B., & Ho Kang, C. (2019). Adoption of cloud business intelligence in Indonesia’s financial services sector. In Intelligent Information and Database Systems: 11th Asian Conference, ACIIDS 2019, Yogyakarta, Indonesia, April 8–11, 2019, Proceedings, Part I 11 (pp. 520-529). Springer International Publishing.
Inyang, B. J. (2013). Defining the role engagement of small and medium-sized enterprises (SMEs) in corporate social responsibility (CSR). International business research, 6(5), 123.
Isma'ili, A., Li, M., Shen, J., & He, Q. (2016). Cloud computing adoption determinants: an analysis of Australian SMEs.
Kasem, M., & Hassanein, E. E. (2014). Cloud business intelligence survey. International Journal of Computer Applications, 90(1), 23-28.
Khayer, A., Jahan, N., Hossain, M. N., & Hossain, M. Y. (2021). The adoption of cloud computing in small and medium enterprises: a developing country perspective. VINE Journal of Information and Knowledge Management Systems, 51(1), 64-91.
Kora, P. (2004). Small and medium enterprises in Papua New Guinea: performance and growth prospects.
Lacerda, T. C., & von Wangenheim, C. G. (2018). Systematic literature review of usability capability/maturity models. Computer Standards & Interfaces, 55, 95-105.
Lateef, M., & Keikhosrokiani, P. (2022). Predicting Critical success factors of business intelligence implementation for improving SMEs’ performances: a case study of Lagos State, Nigeria. Journal of the Knowledge Economy, 1-26.
Lawson, B., & Samson, D. (2001). Developing innovation capability in organizations: a dynamic capabilities approach. International journal of innovation management, 5(03), 377-400.
Lin, R. J. (2013). Using fuzzy DEMATEL to evaluate the green supply chain management practices. Journal of cleaner production, 40, 32-39.
Lu, M. T., Hu, S. K., Huang, L. H., & Tzeng, G. H. (2015). Evaluating the implementation of business-to-business m-commerce by SMEs based on a new hybrid MADM model. Management Decision.
Luo, P., Wang, H., & Yang, Z. (2016). Investment and financing for SMEs with a partial guarantee and jump risk. European Journal of Operational Research, 249(3), 1161-1168.
Makena, J. N. (2013). Factors that affect cloud computing adoption by small and medium enterprises in Kenya. International Journal of Computer Applications Technology and Research, 2(5), 517-521.
Manyika, J., Lund, S., & Bughin, J. (2016). Digital Globalization: The New Era Global Flows. McKinsey Global Institute, pp156.
Mardani, A., Zavadskas, E. K., Govindan, K., Amat Senin, A., & Jusoh, A. (2016). VIKOR technique: A systematic review of the state-of-the-art literature on methodologies and applications. Sustainability, 8(1), 37.
Markets and Markets (2020). Cloud Analytics Market by Solution (Analytics Solutions, Hosted Data Warehouse Solutions, and Cloud BI Tools), Deployment Mode (Public Cloud, Private Cloud, and Hybrid Cloud), Organization Size, Industry Vertical, and Region – Global Forecast to 2025
Masood, T., & Egger, J. (2019). Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robotics and Computer-Integrated Manufacturing, 58, 181-195.
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing
Ming, C. F., On, C. K., Rayner, A., Guan, T. T., & Patricia, A. (2018). The determinant factors affecting cloud computing adoption by small and medium enterprises (SMEs) in Sabah, Malaysia. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(3-2), 83-88.
Ministry of Trade, Commerce and Industry. (2016). Papua New Guinea Small and Medium Enterprise Policy 2016. Port Moresby:
Mishra, V., & Smyth, R. L. (2016). A scoping study to provide an assessment of SME policy priority areas for Papua New Guinea. National Research Institute.
Muriithi, S. M. (2017). African small and medium enterprises (SMEs) contributions, challenges and solutions., 5, 1.
Musaad O, A. S., Zhuo, Z., Musaad O, A. O., Ali Siyal, Z., Hashmi, H., & Shah, S. A. A. (2020). A fuzzy multi-criteria analysis of barriers and policy strategies for small and medium enterprises to adopt green innovation. Symmetry, 12(1), 116.
Myslimi, G., & Kaçani, K. (2016). Impact of SMEs in economic growth in Albania. European Journal of Sustainable Development, 5(3), 151-151.
Narongou, D., & Sun, Z. (2022). Applying intelligent big data analytics in a smart airport business: Value, adoption, and challenges. In Handbook of research on foundations and applications of intelligent business analytics (pp. 216-237). IGI Global.
Ndiaye, N., Razak, L. A., Nagayev, R., & Ng, A. (2018). Demystifying small and medium enterprises’(SMEs) performance in emerging and developing economies. Borsa Istanbul Review, 18(4), 269-281.
Obi, J., Ibidunni, A. S., Tolulope, A., Olokundun, M. A., Amaihian, A. B., Borishade, T. T., & Fred, P. (2018). Contribution of small and medium enterprises to economic development: Evidence from a transiting economy. Data in brief, 18, 835-839.
Octave (2023). GNU Octave (Version 8.2.0) [Computer Software]. https://octave.org/
OECD (2021), The Digital Transformation of SMEs, OECD Studies on SMEs and Entrepreneurship, OECD Publishing, Paris
Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & management, 51(5), 497-510.
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European journal of operational research, 178(2), 514-529.
Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455.
Opricovic, S., & Tzeng, G. H. (2003). Fuzzy multicriteria model for post-earthquake land-use planning. Natural hazards review, 4(2), 59-64.
Ongowarsito, H., Prabowo, H., M., & Gaol, F.L. (2021). Priority Factors for the Adoption of Cloud ERP Based on the Perspective of Consultants and SMEs. International Journal of Emerging Technology and Advanced Engineering.11. 126-135.
Online Output MCDM (2023). Fuzzy DEMATEL Software (Online Software). https://onlineoutput.com/fuzzy-dematel-software/
Online Output MCDM (2023). Fuzzy VIKOR Software (Online Software). https://onlineoutput.com/fuzzy-vikor-software/
Owusu, A., Broni, F. E., Penu, O. K. A., & Boateng, R. (2020). Exploring the critical success factors for cloud BI adoption among Ghanaian SMEs.
Ozdemir, Y. S. (2022). A Spherical Fuzzy Multi-Criteria Decision-Making Model for Industry 4.0 Performance Measurement. Axioms, 11(7), 325.
Popa, S., Soto-Acosta, P., & Martinez-Conesa, I. (2017). Antecedents, moderators, and outcomes of innovation climate and open innovation: An empirical study in SMEs. Technological Forecasting and Social Change, 118, 134-142.
Popescu, N. E. (2014). Entrepreneurship and SMEs innovation in Romania. Procedia Economics and Finance, 16, 512-520.
Puklavec, B., Oliveira, T., & Popovič, A. (2018). Understanding the determinants of business intelligence system adoption stages: An empirical study of SMEs. Industrial Management & Data Systems, 118 (1), 236–261.
Qadeer, A., Waqar Malik, A., Ur Rahman, A., Mian Muhammad, H., & Ahmad, A. (2020). Virtual infrastructure orchestration for cloud service deployment. The Computer Journal, 63(2), 295-307.
Rajapathirana, R. J., & Hui, Y. (2018). Relationship between innovation capability, innovation type, and firm performance. Journal of Innovation & Knowledge, 3(1), 44-55.
Raut, R. D., Gardas, B. B., Narkhede, B. E., & Narwane, V. S. (2019). To investigate the determinants of cloud computing adoption in the manufacturing micro, small and medium enterprises: A DEMATEL-based approach. Benchmarking: An International Journal, 26(3), 990-1019.
Rath, A., Kumar, S., Mohapatra, S., & Thakurta, R. (2012, December). Decision points for adoption cloud computing in small, medium enterprises (SMEs). In 2012 International Conference for Internet Technology and Secured Transactions (pp. 688-691). IEEE.
Rumanti, A. A., Rizana, A. F., Septiningrum, L., Reynaldo, R., & Isnaini, M. M. R. (2022). Innovation capability and open innovation for small and medium enterprises (SMEs) performance: Response in dealing with the COVID-19 pandemic. Sustainability, 14(10), 5874.
Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922, No. 2). Pittsburgh: RWS publications.
Sahandi, R., Alkhalil, A., & Opara-Martins, J. (2012). SMEs’ perception of cloud computing: Potential and security. In Collaborative Networks in the Internet of Services: 13th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2012, Bournemouth, UK, October 1-3, 2012. Proceedings 13 (pp. 186-195). Springer Berlin Heidelberg.
Salisu, I., Bin Mohd Sappri, M., & Bin Omar, M. F. (2021). The adoption of business intelligence systems in small and medium enterprises in the healthcare sector: A systematic literature review. Cogent Business & Management, 8(1), 1935663.
Sang, G., Xu, L., & de Vrieze, P. T. (2016). Implementing a Business Intelligence System for small and medium-sized enterprises, (734599), 1–13.
Saunila, M. (2014). Innovation capability for SME success: perspectives of financial and operational performance. Journal of Advances in Management Research, 11(2), 163-175.
Senarathna, I., Wilkin, C., Warren, M., Yeoh, W., & Salzman, S. (2018). Factors that influence adoption of cloud computing: An empirical study of Australian SMEs. Australasian Journal of Information Systems, 22.
Skafi, M., Yunis, M. M., & Zekri, A. (2020). Factors influencing SMEs’ adoption of cloud computing services in Lebanon: An empirical analysis using TOE and contextual theory. IEEE Access, 8, 79169-79181.
Sobir, R. (2018). Micro-, Small and Medium-sized Enterprises (MSMEs) and their role in achieving the Sustainable Development Goals. New York: United Nations.
Strange, R., & Zucchella, A. (2017). Industry 4.0, global value chains and international business. Multinational Business Review, 25(3), 174-184.
Tehrani, S. R., & Shirazi, F. (2014). Factors influencing the adoption of cloud computing by small and medium size enterprises (SMEs). In Human Interface and the Management of Information. Information and Knowledge in Applications and Services: 16th International Conference, HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014. Proceedings, Part II 16 (pp. 631-642). Springer International Publishing.
Toader, E. A. (2015). Using Cloud Business Intelligence in competency assessment of IT professionals. Database Systems Journal, 6(1), 33-43.
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation. Lexington books.
Trigueros-Preciado, S., Pérez-González, D., & Solana-González, P. (2013). Cloud computing in industrial SMEs: identification of the barriers to its adoption and effects of its application. Electronic Markets, 23, 105-114.
Truong, D. (2010). How cloud computing enhances competitive advantages: A research model for small businesses. The Business Review, Cambridge, 15(1), 59-65.
Trieu, V. H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111-124.
United Nation (2015), Digital development Report of the Secretary-General: Commission on Science and Technology for Development Eighteenth session UN Publishing,
Uppala, A. K., Ranka, R., Thakkar, J. J., Kumar, M. V., & Agrawal, S. (2017). Selection of green suppliers based on GSCM practices: using fuzzy MCDM approach in an electronics company. In Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making (pp. 355-375). IGI Global.
Wirtz, B. W. (2022). Artificial Intelligence, Big Data, Cloud Computing, and Internet of Things. In Digital Government: Strategy, Government Models and Technology (pp. 175-245). Cham: Springer International Publishing.
World Bank national accounts data, and OECD National Accounts data files. (2022) https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?end=2021&locations=FJ-MY-PG&start=1975&view=chart
World Bank. (2018). Small and medium enterprises (SMES) finance improving SMEs’ access to finance and finding innovative solutions to unlock sources of capital. Retrieved March 26, 2020.
Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of planning education and research, 39(1), 93-112.
Yang, J. L., Chiu, H. N., Tzeng, G. H., & Yeh, R. H. (2008). Vendor selection by integrated fuzzy MCDM techniques with independent and interdependent relationships. Information Sciences, 178(21), 4166-4183.
Yadav, R., & Mahara, T. (2019). Factors affecting e-commerce adoption by handicraft SMEs of India. Journal of Electronic Commerce in Organizations (JECO), 17(4), 44-57.
Yalcin, A. S., Kilic, H. S., & Delen, D. (2022). The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technological Forecasting and Social Change, 174, 121193.
Yazdani, A. A., Keramati, A., Turetken, O., & Palanichamy, Y. (2023). Evaluation of cloud computing risks using an integrated fuzzy-ANP and FMEA approaches. International Journal of Applied Decision Sciences, 16(2), 131-164.
Yeboah-Boateng, E. O., & Essandoh, K. A. (2014). Factors influencing the adoption of cloud computing by small and medium enterprises in developing economies. International Journal of Emerging Science and Engineering, 2(4), 13-20.
Yoo, S. K., & Kim, B. Y. (2018). A decision-making model for adopting a cloud computing system. Sustainability, 10(8), 2952.
Yoshino, N., & Taghizadeh Hesary, F. (2016). Major challenges facing small and medium-sized enterprises in Asia and solutions for mitigating them. ADBI Working Paper 564.Tokyo: Asian Development Bank Institute.
Yoshino, N., & Taghizadeh-Hesary, F. (2019). Optimal credit guarantee ratio for small and medium-sized enterprises’ financing: Evidence from Asia. Economic Analysis and Policy, 62, 342-356.
Youssef, A. E., & Mostafa, A. M. (2019). Critical decision-making on cloud computing adoption in organizations based on augmented force field analysis. IEEE Access, 7, 167229-167239.
Zadeh, L. A. (1965). Zadeh, fuzzy sets. Inform Control, 8, 338-353.
|