跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂杰儒
研究生(外文):LU, CHIEH-JU
論文名稱:無人微型商店物流配送機制研究
論文名稱(外文):The Delivery Model Research of Unmanned Micro Store Logistics System
指導教授:温演福
指導教授(外文):WEN, YEAN-FU
口試委員:温演福戴敏育黃懷陞賴榮裕劉一凡
口試日期:2023-07-04
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:54
中文關鍵詞:無人微型商店補貨排程物流配送動態路徑規劃
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
傳統零售服務結合了多樣的科技智能模組,且於消費者追求便利性下,開啟了「無人微型商店」發展,現行常見的無人微型商店模式有智慧販賣機、智取貨架及開放貨架,通常設置於諸如學校、社區及企業內部較封閉的場域中,本研究以商品低於安全庫存、顧客預訂訂單及屆逾期商品下架三項情境進行無人微型商店物流配送規劃,並設計以事件觸發的可容忍時間最短路徑排程演算法(TTSPM)與事先規劃的預估補貨時間排程演算法(ERTM)及分別融入急迫性損益平衡補貨排程法(UGLM)下進行物流配送模擬,從實驗結果發現,事先規劃的演算法於各種環境下的演算結果皆較事件觸發的演算法佳,融入急迫性損益平衡補貨排程法(UGLM)的總延遲時間雖然可能較未融入者長,但由懲罰(penalty)指標發現每一任務的延遲時間較短,因此能有效降低消費者買不到商品的機率,與讀取部分未來銷售訊息運用有時間窗限制的變動鄰域搜尋法(VNSWTW)計算之結果比較,本研究所提之預估補貨時間排程法(ERTM)運算結果差距小於2.86 %,甚至在多數情境下能推進演算結果。本研究於學術的貢獻是在動態路徑規劃和物流配送排程等NP-hard問題中,提出應用於新服務模式下之路徑規劃和排程方法,於實務上以系統化方式建立物流配送機制,短期減少配送員之工作壓力,長期能結合應用於機器人物流配送系統中。
Both on the advance of science and technology, people also pursue more convenient services. Part of the traditional retail stores are changing in a new business model defined as Unmanned Micro Stores. This study focuses on the logistics and distribution planning for unmanned micro stores, considering three scenarios: goods falling below safety stock, customer pre-ordering, and expiring products removal. We design an event-triggered tolerant time shortest path scheduling method (TTSPM) and a pre-planned estimated replenishment time scheduling method (ERTM) to simulate logistics and distribution. In addition, we also employ the urgent gain-loss balance replenishment scheduling method (UGLM), combined with the previous two methods. The experimental results reveal that the pre-planned algorithm outperforms the event-triggered algorithm in various environments. Although the method combined with UGLM in some cases the total delay time may be longer than without it, the penalty value indicates shorter delay times for each task. It effectively reduces the probability of consumers being unable to purchase goods. Comparing the results with the system receive complete information and use Variable Neighborhood Search method with Time Window (VNSWTW), the proposed ERTM in this study shows a difference of less than 2.86 % in computation results and even advances the results in most environments. The academic contribution of this research lies in proposing a scheduling and path planning method applicable to new service models, within a NP-hard problem. The study establishes a systematic logistics and distribution mechanism in practice, thereby in short term reducing the workload of delivery and in long term facilitating integration into robot logistics delivery systems.
中文論文提要 I
ABSTRACT II
目 次 IV
圖 次 V
表 次 VII
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究目的 4
第四節 研究範圍 6
第五節 研究流程 6
第二章 文獻探討 7
第一節 配送排程問題 7
第二節 路徑規劃方法 10
第三章 問題描述與實驗情境設計 12
第一節 問題描述 12
第二節 資料集結構設計 12
第三節 動態需求點產生機制設計 13
第四章 解決方案 23
第一節 配送順序排程及路徑規劃機制設計 23
第二節 效能評估方法 31
第五章 實驗模擬與結果分析 33
第一節 實驗模擬 33
第二節 結果分析 33
第三節 結果討論 45
第六章 總結與建議 49
第一節 總結 49
第二節 研究貢獻 49
第三節 研究限制 50
第四節 未來研究 50
參考文獻 52
著作權聲明 54


1.Esper T. L., Jensen T. D., Turnipseed F. L., and Burton S., The last mile: An examination of effects of online retail delivery strategies on consumers. Journal of Business Logistics, 2003. 24(2): p. 177-203.
2.Gaur V. and Fisher M. L., A periodic inventory routing problem at a supermarket chain. Operations Research, 2004. 52(6): p. 813-822.
3.Hübner A. H., Kuhn H., and Sternbeck M. G., Demand and supply chain planning in grocery retail: An operations planning framework. International Journal of Retail & Distribution Management, 2013. 41(7): p. 512-530.
4.Haghani A. and Jung S., A dynamic vehicle routing problem with time-dependent travel times. Computers & Operations Research, 2005. 32(11): p. 2959-2986.
5.Holzapfel A., Hübner A., Kuhn H., and Sternbeck M. G., Delivery pattern and transportation planning in grocery retailing. European Journal of Operational Research, 2016. 252(1): p. 54-68.
6.Hosny M. I. and Mumford C. L., The single vehicle pickup and delivery problem with time windows: Intelligent operators for heuristic and metaheuristic algorithms. Journal of Heuristics, 2008. 16(3): p. 417-439.
7.Mancini S., Gansterer M., and Triki C., Locker box location planning under uncertainty in demand and capacity availability. Omega, 2023. 120: p. 102910.
8.Salama M. R. and Srinivas S., Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transportation Research Part E: Logistics and Transportation Review, 2022. 164: p. 102788.
9.Saleu R. G. M., Deroussi L., Feillet D., Grangeon N., and Quilliot A., The parallel drone scheduling problem with multiple drones and vehicles. European Journal of Operational Research, 2022. 300(2): p. 571-589.
10.Sorbelli F. B., Corò F., Das S. K., Palazzetti L., and Pinotti C. M., On the scheduling of conflictual deliveries in a last-mile delivery scenario with truck-carried drones. Pervasive and Mobile Computing, 2022. 87: p. 101700.
11.Tomaras D., Boutsis I., and Kalogeraki V., A holistic approach for modeling and predicting bike demand. Information Systems, 2023. 111.
12.Wang X. Z., The comparison of three algorithms in shortest path issue. Journal of Physics: Conference Series, 2018. 1087(2): p. 022011.
13.Yu V. F., Susanto H., Yeh Y.-H., Lin S.-W., and Huang Y.-T., The vehicle routing problem with simultaneous pickup and delivery and parcel lockers. Mathematics, 2022. 10(6).
14.Yu X., Shen S., Badri-Koohi B., and Seada H., Time window optimization for attended home service delivery under multiple sources of uncertainties. Computers & Operations Research, 2023. 150: p. 106045.
15.Zheng Y. and Li Y., Unmanned retail’s distribution strategy based on sales forecasting. 2018 8th International Conference on Logistics, Informatics and Service Sciences (LISS), 2018: p. 1-5.
16.Wang X., Wang S., Wang L., Zheng H., Hao J., He R., and Sun Z., An effective iterated greedy algorithm for online route planning problem, in 2020 IEEE Congress on Evolutionary Computation (CEC). 2020.
17.Aulbur W., Rentzsch W., Pietras F., and Fang T., Last-mile delivery poised for huge growth after e-commerce boom. 2021: Automotive World. https://www.automotiveworld.com/articles/last-mile-delivery-poised-for-huge-growth-after-e-commerce-boom/.
18.林振榮、楊大輝,公共腳踏車調配系統之策略性設計,運輸計劃季刊,2020,49(1): p. 43-66。
19.莊鈞諺、張嘉祥,從智慧販賣機到無人微型商店發展趨勢,電工通訊季刊,2020,2020(2):p. 29-40。
20.盧宗成、洪筠筑,預約制共享停車位系統車位排程最佳化模式與演算法,運輸學刊,2021,33(4):p. 393-420。
21.盧希鵬、商業週刊,C2b逆商業時代:一次搞懂新零售、新製造、新金融的33個創新實例,2017,城邦商業週刊。
22.謝明彧、吳婉瑜,台灣三大超商的下一站與下一戰,遠見雜誌,2022,p. 80-86。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top