跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林文知
研究生(外文):Lin, Wen-Chih
論文名稱:儲能系統零組件之生命週期評估
論文名稱(外文):Life Cycle Assessment of Energy Storage System Components
指導教授:李育明李育明引用關係
口試委員:李育明楊英賢林晉勗
口試日期:2023-06-07
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:自然資源與環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:156
中文關鍵詞:儲能系統三元鋰電池生命週期評估
外文關鍵詞:Energy Storage SystemTernary Lithium BatteryLife Cycle Assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
因應氣候變遷,為達到2050年淨零排放目標,需透過能源轉型,改變發電結構,進而達到溫室氣體排放減量。火力發電占比的降低與增加再生能源的開發已是必然的措施。但再生能源存在兩大問題:間歇性與系統供需平衡。在此情形下,為穩定電力的供應,須搭配儲能系統,儲存過剩之電力,待需要的時間或地點釋放能量做使用,儲能系統可以輔助再生能源改善間歇性問題。但是,儲能系統在製造組裝及使用階段會造成能源消耗與環境衝擊,相關議題須進一步延伸探討。
本研究以分散型儲能系統、併網型儲能系統為研究主題,透過生命週期評估方法,檢視儲能系統零組件對於環境之潛在的衝擊,並探討儲能系統之效益評估。經由文獻回顧,本研究以整體儲能系統容量之5,065 kWh (分散型儲能系統)與5,203.4 kWh (併網型儲能系統)設定為生命週期評估功能單位,系統邊界為搖籃到墳墓,量化電池組裝到使用階段的環境衝擊,廢棄階段則以質化的方式說明。
研究結果顯示:分散型儲能系統從電池組裝到使用階段將產生880 tCO2e,併網型儲能系統則產生1,666 tCO2e。儲能系統主要的環境衝擊集中於電池組裝與使用階段;在電池組裝階段需投入大量的能資源,因此,結果顯示非生物耗竭的影響占比最大,分散型儲能系統占比為99.93%,併網型儲能系統占比為99.83%;從整個環境衝擊來看,儲能系統的環境衝擊集中在海洋水生生態毒性,因在電池組裝與使用階段將消耗掉大量的能源,電力生產的來源為煤炭,其運輸、處置過程,產生的煤灰顆粒沉澱後影響水體,造成海洋的環境衝擊。
儲能系統的效益在於其可提供的應用與服務,包括電能時移、黑啟動、頻率調節、整合再生能源等等,主要的應用為電能時移。透過儲能系統整合再生能源,在未來持續上升的用電量以及極端氣候影響間歇性能源的供應量情形下,儲能系統有助於穩定電力的供應,並可協助需長時間或不間斷使用電力的醫療用戶、交通、工業等領域。
In response to climate change, to achieve net zero emissions in 2050, it is necessary to change the structure of power generation through energy transformation, to achieve the reduction of greenhouse gas emissions. Reducing the proportion of fossil-fuel power stations and increasing the development of renewable energy are inevitable measures. But there are two major problems with renewable energy: intermittency, system supply and demand balance. In this case, to stabilize the power supply, an energy storage system must be used to store excess power and release the energy for use at the required time or place. The energy storage system can assist renewable energy to improve intermittency problems. However, the energy storage system will cause energy consumption and environmental impact during the manufacturing, assembly and use phases, and related issues need to be further explored.
This study focuses on distributed energy storage systems and grid-connected energy storage systems. Through life cycle assessment methods, the potential impact of energy storage system components on the environment is examined, and the benefit evaluation of energy storage systems is discussed. After literature review, this study sets the overall energy storage system capacity of 5,065 kWh (distributed energy storage systems) and 5,203.4 kWh (grid-connected energy storage systems) as the functional unit of life cycle assessment, and the system boundary is from cradle to grave. The environmental impact from assembly to use, and the disposal stage are explained qualitatively.
The research results show that the decentralized energy storage systems will produce 880 tCO2e from battery assembly to use phases, and the grid-connected energy storage systems will produce 1,666 tCO2e. The main environmental impact of the energy storage system is concentrated in the battery assembly and use phases; a large amount of energy needs to be invested in the battery assembly phases. Therefore, the results show that the impact of abiotic depletion accounts for the largest proportion, and the decentralized energy storage system accounts for 99.93%. Grid-connected energy storage systems accounted for 99.83%; from the perspective of the overall environmental impact, the environmental impact of energy storage systems is concentrated in marine aquatic ecotoxicity, because a large amount of energy will be consumed during battery assembly and use, and the source of power production for coal, during its transportation and disposal, the coal ash particles produced will affect the water body after precipitation, causing environmental impact on the ocean.
The benefit of an energy storage system lies in the applications and services it can provide, including electric energy time shift, black start, frequency regulation, integration of renewable energy, etc. The main application is electric energy time shift. Integrate renewable energy through the energy storage system. In the case of rising power consumption in the future and extreme climates affecting the supply of intermittency energy, the energy storage system can help stabilize the supply of electricity and assist long-term or uninterrupted use medical users of electricity, transportation, industry, and other fields.
第一章 緒論
第一節 研究動機與目的
第二節 研究流程與論文架構
第二章 文獻回顧
第一節 儲能系統概述
第二節 國際儲能系統發展現況
第三節 臺灣儲能系統發展現況
第四節 生命週期評估
第三章 研究架構與方法
第一節 研究步驟與研究架構
第二節 生命週期評估研究方法
第四章 結果與討論
第一節 目標與範疇界定
第二節 生命週期盤查分析
第三節 生命週期衝擊評估
第四節 生命週期闡釋
第五節 效益評估
第五章 結論與建議
第一節 結論
第二節 建議
參考文獻
英文文獻
中文文獻

英文文獻

Aitor P. Acero, Cristina Rodríguez, Andreas Ciroth. (2016). “LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories”. GreenDelta.

Alex Eller and Dexter Gauntlett. (2017). “Energy Storage Trends and Opportunities in Emerging Markets”. International Finance Corporation (IFC) and Energy Sector Management Assistance Program (ESMAP) https://www.esmap.org/node/57868

Aramendia, I., Fernandez-Gamiz, U., Martinez-San-Vicente, A., Zulueta, E., and Lopez-Guede, J. M. (2020). “Vanadium redox flow batteries: A review oriented to fluid-dynamic optimization”. Energies, 14(1), 176. https://www.mdpi.com/1996-1073/14/1/176

Bouman, E. A., Øberg, M. M., and Hertwich, E. G. (2013). “Life Cycle assessment of compressed air energy storage (CAES)”. In The 6th international conference on life cycle management, Gothenburg, Sweden. https://www.semanticscholar.org/paper/LIFE-CYCLE-ASSESSMENT-OF-COMPRESSED-AIR-

ENERGY-Bouman-%C3%98berg/ca184826aaf866d0446175a77c2ea84a072be898
Carvalho, M. L., Temporelli, A., and Girardi, P. (2021). “Life cycle assessment of stationary storage systems within the Italian electric network”. Energies, 14(8), 2047. https://www.mdpi.com/1996-1073/14/8/2047

Chuang, Y. S., Cheng, C. C., and Cheng, H. P. (2022). “The current development of the energy storage industry in Taiwan: A snapshot”. Journal of Energy Storage, 53, 105-117. https://www.sciencedirect.com/science/article/pii/S2352152X22011185

Curran, M. A. (2013). “Life cycle assessment: a review of the methodology and its application to sustainability”. Current Opinion in Chemical Engineering, 2(3), 273-277. https://www.sciencedirect.com/science/article/abs/pii/S2211339813000221

Dai, Q., Kelly, J. C., Gaines, L., and Wang, M. (2019). “Life cycle analysis of lithium-ion batteries for automotive applications”. Batteries, 5(2), 48. https://www.mdpi.com/2313-0105/5/2/48

David, B. R., Spencer, S., Miller, J., Almahmoud, S., and Jouhara, H. (2021). “Comparative environmental life cycle assessment of conventional energy storage system and innovative thermal energy storage system”. International Journal of Thermofluids, 12, 100-116. https://www.sciencedirect.com/science/article/pii/S2666202721000549

Deloitte and Touche LLP. (2015). “Energy storage: Tracking the technologies that will transform the power sector”. Deloitte & Touche LLP. https://www2.deloitte.com/tr/en/pages/energy-and-resources/articles/energy-

storage-tracking-technologies-transform-power-sector.html
Dieterle, M., Fischer, P., Pons, M. N., Blume, N., Minke, C., and Bischi, A. (2022). “Life cycle assessment (LCA) for flow batteries: A review of methodological decisions”. Sustainable Energy Technologies and Assessments, 53, 102457. https://www.sciencedirect.com/science/article/pii/S2213138822005094

Divya, K. C., and Østergaard, J. (2009). “Battery energy storage technology for power systems—An overview”. Electric power systems research, 79(4), 511-520. https://www.sciencedirect.com/science/article/pii/S0378779608002642

Dr A. Ciroth, C. Di Noi, T. Lohse, M. Srocka. (2020). “openLCA 1.10 Comprehensive User Manual”. GreenDelta. https://www.openlca.org/learning/#casestudies

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., ... and Suh, S. (2009). “Recent developments in life cycle assessment”. Journal of environmental management, 91(1), 1-21. https://www.sciencedirect.com/science/article/pii/S0301479709002345

Gandiglio, M., Marocco, P., Bianco, I., Lovera, D., Blengini, G. A., and
Santarelli, M. (2022). “Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community”. International Journal of Hydrogen Energy. https://www.sciencedirect.com/science/article/pii/S0360319922032505

GreenDelta. (2020). “Basic Modelling in openLCA”. GreenDelta. https://www.openlca.org/learning/#casestudies

Guney, M. S., and Tepe, Y. (2017). “Classification and assessment of energy storage systems”. Renewable and Sustainable Energy Reviews, 75, 1187-1197. https://www.sciencedirect.com/science/article/abs/pii/S1364032116308218

Hischier, R., Weidema, B., Althaus, H. J., Bauer, C., Doka, G., Dones, R., ... and Nemecek, T. (2010). “Implementation of life cycle impact assessment methods”. Final report ecoinvent v2, 2.

Hou, R., Gund, G. S., Qi, K., Nakhanivej, P., Liu, H., Li, F., ... and Park, H. S. (2019). “Hybridization design of materials and devices for flexible electrochemical energy storage”. Energy Storage Materials, 19, 212-241. https://www.sciencedirect.com/science/article/abs/pii/S2405829718314181

International Electrotechnical Commission (IEC). (2011). “Electrical Energy Storage white paper”. IEC. https://www.iec.ch/basecamp/electrical-energy-storage

International Energy Agency (IEA). (2014). “Technology Roadmap: Energy Storage”. IEA. https://www.iea.org/reports/technology-roadmap-energy-storage

International Renewable Energy Agency (IRENA). (2017). “Electricity Storage and Renewables: Costs and Markets to 2030”. IRENA. https://www.irena.org/publications/2017/oct/electricity-storage-and-renewables-costs-and-markets

International Renewable Energy Agency (IRENA). (2020). “Electricity Storage Valuation Framework: Assessing System Value and Ensuring Project Viability”. IRENA. https://www.irena.org/publications/2020/Mar/Electricity-Storage-Valuation-Framework-2020

International Renewable Energy Agency (IRENA). (2022). “Renewable capacity highlights”. IRENA. https://www.irena.org/Publications/2022/Apr/Renewable-Capacity-Statistics-2022

International Standards Organization (ISO) (2006). “Environmental management — Life cycle assessment — Principles and framework”. ISO 14040:2006(E) International Standard. https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en

International Standards Organization (ISO) (2006). “Environmental management — Life cycle assessment — Requirements and guidelines”. ISO 14044:2006(E) International Standard. https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en

Jeevarajan, J. A., Joshi, T., Parhizi, M., Rauhala, T., and Juarez-Robles, D. (2022). “Battery Hazards for Large Energy Storage Systems”. https://pubs.acs.org/doi/10.1021/acsenergylett.2c01400

Koese, M., Blanco, C. F., Vert, V. B., and Vijver, M. G. (2023). “A social life cycle assessment of vanadium redox flow and lithium‐ion batteries for energy storage”. Journal of Industrial Ecology, 27(1), 223-237. https://onlinelibrary.wiley.com/doi/10.1111/jiec.13347

Krebs, L., Frischknecht, R., Stolz, P., and Sinha, P. (2020). “Environmental life cycle assessment of residential pv and battery storage systems”. International Energy Agency (IEA) PVPS Task, 12. https://iea-pvps.org/key-topics/environmental-life-cycle-assessment-of-
residential-pv-and-battery-storage-systems/

Lechon, Y., Lago, C., Herrera, I., Gamarra, A. R., and Pérula, A. (2023). “Carbon benefits of different energy storage alternative end uses. Application to the Spanish case”. Renewable and Sustainable Energy Reviews, 171, 112985. https://www.sciencedirect.com/science/article/pii/S1364032122008668

Mark Goedkoop, Michiel Oele, Jorrit Leijting, Tommie Ponsioen, Ellen Meijer. (2016). Introduction to LCA with SimaPro.
Menoufi, K. A. I. (2011). “Life cycle analysis and life cyle impact assessment methodologies: a state of the art”. Universitat de Lleida. https://repositori.udl.cat/items/19cf81ab-6334-4505-9072-ca8dcef31fe5

Michael Sterner and Ingo Stadler (2019). “Handbook of Energy Storage Demand, Technologies, Integration”. 24, 33-36. https://books.google.com.tw/books?id=ApGyDwAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false

Mitali, J., Dhinakaran, S., and Mohamad, A. A. (2022). “Energy storage systems: A review”. Energy Storage and Saving. https://www.sciencedirect.com/science/article/pii/S277268352200022X

Molina, M. G. (2012). “Distributed energy storage systems for applications in future smart grids”. In 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA) (pp. 1-7). IEEE. https://ieeexplore.ieee.org/document/6319051

Mostert, C., Ostrander, B., Bringezu, S., and Kneiske, T. M. (2018). “Comparing electrical energy storage technologies regarding their material and carbon footprint”. Energies, 11(12), 3386. https://www.mdpi.com/1996-1073/11/12/3386

Mrozik, W., Rajaeifar, M. A., Heidrich, O., and Christensen, P. (2021). “Environmental impacts, pollution sources and pathways of spent lithium-ion batteries”. Energy & Environmental Science, 14(12), 6099-6121. https://pubs.rsc.org/en/content/articlelanding/2021/EE/D1EE00691F

Numan, M., Baig, M. F., and Yousif, M. (2023). “Reliability evaluation of energy storage systems combined with other grid flexibility options: A review”. Journal of Energy Storage, 63, 107022. https://www.sciencedirect.com/science/article/pii/S2352152X2300419X

Olabi, A. G., and Abdelkareem, M. A. (2021). “Energy storage systems towards 2050”. Energy, 219, 119634. https://www.sciencedirect.com/science/article/abs/pii/S0360544220327419

Pagliaro, M., and Meneguzzo, F. (2019). “Lithium battery reusing and recycling: A circular economy insight”. Heliyon, 5(6), e01866. https://www.sciencedirect.com/science/article/pii/S2405844019347012

Rossi, F., Castellani, B., and Nicolini, A. (2015). “Benefits and challenges of mechanical spring systems for energy storage applications”. Energy Procedia, 82, 805-810. https://www.sciencedirect.com/science/article/pii/S187661021502576X

Sarbu, I., and Sebarchievici, C. (2018). “A comprehensive review of thermal energy storage”. Sustainability, 10(1), 191. https://www.mdpi.com/2071-1050/10/1/191

Simon, B., and Weil, M. (2013). “Analysis of materials and energy flows of different lithium ion traction batteries”. Metallurgical Research & Technology, 110(1), 65-76. https://www.cambridge.org/core/journals/metallurgical-research-and-technology/article/abs/analysis-of-materials-and-energy-flows-of-different-lithium-ion-traction-batteries/3FEB0DDB369C5B1BCCDB39BFFC24F4F7

Tretyakova, M. O., Vardavas, A. I., Vardavas, C. I., Iatrou, E. I., Stivaktakis, P. D., Burykina, T. I., ... and Golokhvast, K. S. (2021). “Effects of coal microparticles on marine organisms: A review”. Toxicology Reports, 8, 1207-1219. https://www.sciencedirect.com/science/article/pii/S2214750021001128

United Nations Environment Programme (UNEP). (2022). “Emissions Gap Report 2022”. UNEP. https://www.unep.org/resources/emissions-gap-report-2022

Vandepaer, L., Cloutier, J., Bauer, C., and Amor, B. (2019). “Integrating batteries in the future Swiss electricity supply system: a consequential environmental assessment”. Journal of Industrial Ecology, 23(3), 709-725. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.12774

Water Power Technologies Office (WPTO). (2023). “Accomplishments Report 2021-2022”. WPTO. https://www.energy.gov/eere/water/water-power-technologies-office-2021-2022-accomplishments-report#hydro

World Energy Council (WEC). (2016). “E-storage Shifting from cost to value Wind and solar applications”. WEC. https://www.wec-italia.org/world-energy-resources-e-storage-shifting-from-cost-to-value-wind-and-solar-applications/

World Energy Council (WEC). (2019). “Energy Storage Monitor Latest trends in energy storage 2019”. WEC.

World Energy Council (WEC). (2020). “Innovation Insights Brief - Five Steps To Energy Storage”. WEC. https://www.worldenergy.org/publications/entry/innovation-insights-brief-five-steps-to-energy-storage

World Energy Council (WEC). (2020). “World Energy Scenarios 2019: Exploring Innovation Pathways To 2040”. WEC. https://www.worldenergy.org/publications/entry/world-energy-scenarios-2019-exploring-innovation-pathways-to-2040

Wu, Q., Xue, F., Lu, S., Jiang, L., Wang, X., and Huang, T. (2022). “Planning of distributed energy storage by a complex network approach”. Journal of Renewable and Sustainable Energy, 14(2), 024102. https://aip.scitation.org/doi/10.1063/5.0087338

Yang, Y., Bremner, S., Menictas, C., and Kay, M. (2018). “Battery energy storage system size determination in renewable energy systems: A review”. Renewable and Sustainable Energy Reviews, 91, 109-125. https://www.sciencedirect.com/science/article/pii/S1364032118301436

Yuan, C., Deng, Y., Li, T., and Yang, F. (2017). “Manufacturing energy analysis of lithium ion battery pack for electric vehicles”. CIRP Annals, 66(1), 53-56. https://www.sciencedirect.com/science/article/pii/S0007850617301099

Yudhistira, R., Khatiwada, D., and Sanchez, F. (2022). “A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage”. Journal of Cleaner Production, 358, 131999. https://www.sciencedirect.com/science/article/pii/S0959652622016079

Zakeri, B., Gissey, G. C., Dodds, P. E., and Subkhankulova, D. (2021). “Centralized vs. distributed energy storage–Benefits for residential users”. Energy, 236, 121443. https://www.sciencedirect.com/science/article/pii/S0360544221016911

Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., ... and Chi, F. (2021). “A review of technologies and applications on versatile energy storage systems”. Renewable and Sustainable Energy Reviews, 148, 111263. https://www.sciencedirect.com/science/article/pii/S1364032121005505

中文文獻

黃郁青(2016),國內儲能技術現況與未來發展,黃郁青。https://www.iner.gov.tw/eip/msn.aspx?datatype=YW5hbHlzaXM=&id=MTIw
黃郁斌、吳信德、黃張鴻、蕭純育、劉運鴻(2021),電力系統儲能應用規劃,臺灣電力股份有限公司系統規劃處。
經濟部能源局(2022),《110年度全國電力資源供需報告》,經濟部能源局。https://www.moeaboe.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=20851
經濟部能源局(2020),《智慧電網總體規劃方案核定本》,經濟部能源局。https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=9922
行政院環境保護署(2021),《我國國家溫室氣體排放清冊報告(2021年版)》,行政院環境保護署。 https://unfccc.saveoursky.org.tw/nir/tw_nir_2021.php

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top