跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴文駿
研究生(外文):YEN, WEN-JUN
論文名稱:使用八相位調變之六十億赫茲展頻時脈產生器
論文名稱(外文):A 6GHz Spread-Spectrum Clock Generator Applying Eight Phase Modulation
指導教授:黃弘一
指導教授(外文):HUANG, HONG-YI
口試委員:洪浩喬鄭國興劉仁傑黃弘一
口試委員(外文):HONG, HAO-CHIAOCHENG, KUO-HSINGLIU, JEN-CHIEHHUANG, HONG-YI
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:鎖相迴路展頻時脈多相位壓控振盪器多頻帶校正次環回授高速多工器相位調變
外文關鍵詞:phase-locked loopspread spectrum clock generatormulti-phase voltage-controlled oscillatormulti-band calibrationhigh-speed multiplexerssub-feedback loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文擬實現一個具製程、溫度補償技巧六十億赫茲展頻時脈產生器,並採用三角波展頻技術。在相同功耗下實現多相位時脈產生器,將面臨操作頻率之上限,在此提供次環提升頻率,為了實現低功耗使用製程補償技術(GPC),此技術也可以提高良率。展頻功能透過具製程溫度補償的高速八對二類比式多工器,降低受製程溫度變異而影響以及頻率影響,使除數更加準確,藉此能擁有更佳的展頻效能,在比較三角波、洋蔥波以及亂數波三種情況下,使用一階三角調變器來實現展頻時脈產生器,即可達到相當優異且平坦度高的電磁干擾抑制效果。除此之外,電路加上了偵測VC+/-的多頻帶控制電路來調電壓控制振盪器尾電流的方式實現對製程、溫度、操作電壓變異低靈敏度且低KVCO的展頻時脈產生器,而對電磁干擾抑制效果有更進一步改善。
本論文的測試晶片實現於台積電90nm製程(1P9M),核心電路的面積為0.015 mm2。本論文使用的電壓源為1V,輸出時脈的基礎頻率為6GHz,核心電路之總功耗為6.3mW,電磁干擾抑制能力則為約23dB。成功實現了低功耗並有良好電磁干擾抑制能力的展頻時脈產生器。

In this thesis, a 6Gbit/s fully differential spread spectrum clock generator is realized by using the process compensation scheme and triangular wave modulation.
Implementing multiple bit clock generators under the same power consumption will face the upper limit of the operating frequency. Sub-feedback loop technique is added to increase the frequency. In order to achieve high yield chip, the Gate−controlled Process Compensator is used. This technique can reduce process error and power consumption. The spread spectrum function uses a high-speed 8 to 2 analog multiplexers with GPC, it makes phase switching more accurate, there by enabling better spread spectrum performance. Comparing the triangular wave, onion wave and random number wave, using the triangular modulator to realize the spread spectrum clock generator can achieve a good and flat electromagnetic interference suppression effect.
In addition, the circuit adds a multi-band control circuit that detects VC+/- to regulate the tail current of the voltage-controlled oscillator to realize a spread-spectrum clock generator with low sensitivity to process, temperature, and operating voltage variations.
The test chip in this thesis is implemented in TSMC's 90nm process (1P9M), and the area of the core circuit is 0.015 mm2. The voltage source used in this paper is 1V, the operation frequency is 6GHz, the total power consumption of the core circuit is 6.45mW, and the EMI redution is around 23dB. Successfully implemented a spread spectrum clock generator with low power consumption and good EMI suppression capability.

誌 謝 II
國立臺北大學電機工程學系 111 學年度第 2 學期碩士學位論文提要 III
論文題目:使用八相位調變之六十億赫茲展頻時脈產生器 III
論文頁數:99頁 III
ABSTRACT IV
目 錄 V
圖 目 錄 VII
表 目 錄 XI
第1章 緒 論 1
1-1 研究動機與目的 1
1-2 論文章節架構 4
第2章 先前技術探討 5
2-1 展頻時脈概念 5
2-2 基本鎖相迴路 9
2-3 三角積分調變技術 11
2-4 相位切換研究 17
2-5 多頻帶校正技術與相關先前研究 21
2-6 次環回授壓控振盪器 22
2-7 小結 23
第3章 展頻時脈產生器電路設計 24
3-1 本論文設計概觀 24
3-2 頻率選擇器 ( Frequency selector) 26
3-3 相位頻率偵測器 ( Phase Frequency Detector ) 26
3-4 全差動式電荷泵 ( Differential Charge Pump with CMFB ) 33
3-5 迴路濾波器 ( Low Pass Filter, LPF) 42
3-6 八相位折疊式差動壓控振盪器 ( 8 phase Folded Differential VCO ) 48
3-7 多頻帶校正電路 ( Multi-band VCO Calibration ) 57
3-8 高速8對2多工器(CML 8 to 2 multiplexer) 60
3-9 預除器 ( prescaler ) 62
3-10除頻器 ( Divider ) 64
3-11 一階三角積分調變器 ( 1st-order Δ-Σ Modulator ) 65
3-12三角波產生器 ( Triangle Wave Generator ) 68
3-13 相位選擇器( Phase Selector) 72
3-14 全電路功率消耗 73
3-15 行為模擬(Behavior Simulation) 75
第4章 電路佈局模擬 77
4-1 展頻時脈展生器電路佈局 77
4-2 展頻時脈產生器佈局前和佈局後模擬比較 83
4-3 參考突波在展頻範圍內 88
4-4 文獻比較 91
4-5 晶片量測規劃 93
第5章 結論與未來研究方向 95
5-1結論 95
5-2未來研究方向 95
參考文獻 96
著作權聲明 100

[1] H.-R. Lee, O. Kim, G. Ahn, and D. K. Jeong, “A Low Jitter 5000 ppm Spread Spectrum Clock Generator for Multi-channel SATA Transceiver in 0.18um CMOS,” IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, pp. 160-161, 2005.
[2] D.-S. Shen and S.-I. Liu, “A Low-Jitter Spread Spectrum Clock Generator Using FDMP,” IEEE Tran. Circuits Syst. II, vol. 54, no. 11, pp. 979-983, Nov. 2007.
[3] S.-Y. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111-3119, Nov. 2009.
[4] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A Δ-∑ PLL-based spread spectrum clock generator with a ditherless fractional topology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 1, pp. 51-59, Jan. 2009.
[5] Y.-H. Kao and Y.-B. Hsieh, “A low-power and high-precision spread spectrum clock generator for serial advanced technology attachment applications using two-point modulation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 2, pp. 245-254, May 2009.
[6] D. D. Caro, C. A. Romani, N. Petra, A. G. M. Strollo, and C. Parrella, “A 1.27 GHz, all-digital spread spectrum clock generator/synthesizer in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1048-1060, May 2010.
[7] S. Hwang, M. Song, Y.-H. Kwak, I. Jung, and C. Kim, “A 3.5 GHz Spread-Spectrum Clock Generator With a Memoryless Newton-Raphson Modulation Profile,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1199-1208, May 2012.
[8] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst, I: Reg. Papers, Vol. 57 Issue: 10, pp. 2577-2587, Oct. 2010.
[9] K.-H. Cheng, C.-L. Hung, and C.-H. Chang, “A 0.77 ps RMS jitter 6-GHz spread-spectrum clock generator using a compensated phase rotating technique,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1198-1213, May 2011.
[10] H. Sun, K. Sobue, K. Hamashita, T. Anand and U. Moon, "A 951-fsrms Period Jitter 3.2% Modulation Range in-Band Modulation Spread-Spectrum Clock Generator," IEEE J. Solid-State Circuits, vol. 55, no. 2, pp. 426-438, Feb. 2020.
[11] C.-H. Weng and T.-C. Lee, “A 6-GHz Self-Oscillating Spread-Spectrum Clock Generator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 5, pp. 1264-1273, May 2013.
[12] M. Song, S. Ahn, I. Jung, Y. Kim, and C. Kim, “Piecewise Linear Modulation Technique for Spread Spectrum Clock Generation,” IEEE Trans. VLSI Syst., pp. 1234-1245, July. 2013.
[13] K. H. Cheng, C. L. Hung, C. H. Chang, Y. L. Lo, W. B. Yang, and J. W. Miaw, “A Spread-Spectrum Clock Generator Using Fractional-N PLL Controlled Delta-Sigma Modulator for Serial-ATA III,” IEEE Design and Diagnostics of Electronic Circuits and Systems, pp. 1-4, Apr. 2008.
[14] I. T. Lee, S. H. Ku, and S. I. Liu, “An all-digital spread spectrum clock generator with self-calibrated bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2813-2822, Nov. 2013.
[15] T. Kawamoto, M. Suzuki, and T. Noto, “1.9-ps jitter, 10.0 dBm EMI reduction spread-spectrum clock generator with autocalibration VCO technique for serial-ATA application,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 5, pp. 1118-1126, May. 2014.
[16] H. Ryu, S. Park, E.-T. Sung, S.-G. Lee, D. Baek, “A Spread Spectrum Clock Generator Using a Programmable Linear Frequency Modulator for Multipurpose Electronic Devices,” IEEE Trans. Electromagn. Compat., vol. 57, no. 6, pp. 1447-1456, Dec. 2015.
[17] C.-C. Chung, D. Sheng, W.-D. Ho, “A Low-Cost Low-Power All-Digital Spread-Spectrum Clock Generator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 5, pp. 983-987, Feb. 2015.
[18] S. Sadrafshari, R. Eskandari, K. Hadidi, A. Khoei, “Low-jitter spread spectrum clock generator using charge pump frequency detector in 0.18 μm CMOS for USB3.1 transceivers,” IET Circuits, Devices & Systems, vol. 12, Issue. 1, pp. 99-107, Jan. 2018.
[19] W.G. Wong, “A Spread-Spectrum Clock Generator Using a Phase-Compensation Fractional Phase-Locked Loop Technique”, Electrical Engineering, National Chung Hsing University, 2006.
[20] H.-H. Chang, I.-H. Hua, and S.-I. Liu, “A Spread-Spectrum Clock Generator with Triangular Modulation,” IEEE J. Solid-State Circuits, vol.30, no. 4, pp. 673-676, Apr. 2003.
[21] S.-G. Bae, G. Kim and C. Kim, "A 5-GHz Subsampling PLL-Based Spread-Spectrum Clock Generator by Calibrating the Frequency Deviation," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 64, no. 10, pp. 1132-1136, Oct. 2017.
[22] Y.-H. Choi, B. Kim, J.-Y. Sim and H.-J. Park, "A Phase-Interpolator-Based Fractional Counter for All-Digital Fractional-N Phase-Locked Loop," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 64, no. 3, pp. 249-253, March 2017.
[23]D. De Caro, “Optimal discontinuous frequency modulation for spread-spectrum clocking,” IEEE Trans. Electromagn. Compat., vol. 55, no. 5, pp. 891-900, Oct. 2013.
[24] D. De Caro, F. Tessitore, G. Vai, N. Imperato, N. Petra, E. Napoli, C. Parrella, and A. G. M. Strollo, “A 3.3 GHz Spread-Spectrum Clock Generator Supporting Discontinuous Frequency Modulations in 28 nm CMOS, ” IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 2074-2089, Sep. 2015
[25] F. Tang et al., "A 32-Step Phase-Compensated Spread-Spectrum RF-PLL With 19.44-dB EMI Reduction and 10-fs Extra RMS Jitter," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 4, pp. 1564-1575, April 2020.
[26] F. Pareschi, G. Setti and R. Rovatti "EMI Reduction via Spread Spectrum in DC/DC Converters: State of the Art, Optimization, and Tradeoffs", Access, IEEE, Vol. 3, pp. 2857-2874, 2015.
[27] Z.-X. Yang “Low-Power 6-G bit/s Spread Spectrum Clock Generator with Process Compensation Scheme,” Electrical Engineering, National Taipei University, 2014.
[28] P.-Y. Liu “A PVT Insensitive 6-Gbits/s Spread Spectrum Clock Generator Using Phase Compensation Scheme,” Electrical Engineering, National Taipei University, 2018.
[29] Y.-H. Chen “A SATA-III Spread Spectrum Clock Generator Using True Modulus Divider and Multi-band Calibration,” Electrical Engineering, National Taipei University, 2020.
[30] P.-Y. Li “A 6GHz Low-Power Spread Spectrum Clock Generator with True Modulus Divider and Multi-Phase Scheme,” Electrical Engineering, National Taipei University, 2022.
[31] H.-Y. Huang, J.-C. Liu, F.-C. Tsai, K.-H. Lee, K.-Y. Chen “A 12-Phase and 5-GHz PLL with a Subfeedback Loop Technique,” Circuits, Systems, and Signal Processing, Sep. 2022.
[32] S.-I. Liu and C.-Y. Yang, “A Phase Locking Loop,” Tsang Hai, 2006.
[33] W. B. Wilson, U.-K. Moon, “A CMOS Self-Calibrating Frequency Synthesizer,”
IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437–1444, Oct. 2000.
[34] T.-H. Lin and Y.-J. Lai, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340-349, Feb. 2007.
[35] Y.-H. Chuang, S.-L. Jang, J.-F. Lee, and S.-H. Lee, “A Low Voltage 900-MHz Voltage Controlled Ring Oscillator With Wide Liming,” IEEE Asia-Pacific Conf. on Circuits and Systems Tech. Papers, pp. 301-304, 2004.
[36] A. Aktas and M. Ismail, “CMOS PLL calibration techniques,” IEEE Circuits and Devices Magazine, vol. 20, Issue. 5, pp. 6-11, Oct. 2004.
[37] H.-Y. Huang, S.-F. Ho, F.-Y. Su, “A Dual-Modulus Prescaler Using Double-Edge-Triggered D-Flip-Flops,” in Proc. IEEE Midwest Symposium on Circuits and Systems, pp. 209-212, 2003.
[38] S. -G. Bae, S. Hwang, J. Song, Y. Lee and C. Kim, "A ΔΣ Modulator-Based Spread-Spectrum Clock Generator with Digital Compensation and Calibration for Phase-Locked Loop Bandwidth," IEEE Trans. on Circuits and Syst. II: Express Briefs, vol. 66, no. 2, pp. 192-196, Feb. 2019.903-907, Jul. 2018.
[39] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001.
[40] B. Razavi, “Design of Integrated Circuits for Optical Communications, ” WILEY, 2012.
[41] B. Razavi, “Design of CMOS Phase-Locked Loops From Circuit Level to Architecture Level, ” Cambridge, 2020.
[42] B. Razavi, “The Crystal Oscillator A Circuit for All Seasons, ” IEEE Solid-State Circuits Magazine, pp. 7-9, Spring 2017.
[43] B. Razavi, Y. Chang, A. Manian, L. Kong “A 32-mW 40-Gb/s CMOS NRZ Transmitter, ” IEEE 2018.
[44] B. Razavi, “Jitter-Power Trade-Offs in PLLs, ” IEEE Trans. Circuits Syst. I: Reg. Papers, Vol. 68, No. 4, pp. 1381-1387, Apr. 2021.
[45] B. Razavi, “Analysis, Modeling, and Simulation of Phase Noise in Monolithic Voltage-Controlled Oscillators ” IEEE Custom Integated Circuit Conference, pp. 14.5.1-14.5.4, 1995.
[46] B. Razavi, “The Ring Oscillator,” IEEE Solid-State Circuits Magazine, pp. 10-14, Fall 2019.
[47] X. Jin, W. Park, D.-S. Kang, Y. Ko, K.-W. Kwon and J.-H. Chun, “A 4-GHz Sub-Harmonically Injection-Locked Phase-Locked Loop with Self-Calibrated Injection Timing and Pulsewidth,” IEEE J. Solid-State Circuits, Vol. 55, No. 10, pp. 2724-2733, oct. 2020.
[48] Y. Lee, T. Seong, S. Yoo and J. Choi, “A Low-Jitter and Low-Reference-Spur Ring-VCOBased Switched-Loop Filter PLL Using a Fast Phase-Error Correction Technique,” IEEE J. Solid-State Circuits, Vol. 53, No. 4, pp. 1192-1202, Apr. 2018.
[49] S. S. Nagam and P. R. Kinget, “A Low-Jitter Ring-Oscillator Phase-Locked Loop
Using Feedforward Noise Cancellation with a Sub-Sampling Phase Detector,” IEEE J. Solid-State Circuits, Vol. 53, No. 3, pp. 703-714, Mar. 2018.
[50] Z. Yang, Y. Chen, P.-I. Mak, Fellow, and Rui P. Martins, “A 0.003-mm2 440fsRMS-Jitter and −64dBc-Reference-Spur Ring-VCO-Based Type-I PLL Using a Current-Reuse Sampling Phase Detector in 28-nm CMOS,” IEEE Trans. Circuits Syst. I: Reg. Papers, Vol. 68, Issue:6, pp. 2307-2316, Jun. 2021.
[51] M. Jalalifar and G.-S. Byun, “A Low-Jitter Ring-Oscillator Phase-Locked Loop Using Feedforward Noise Cancellation with a Sub-Sampling Phase Detector in 28-nm CMOS,” IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 65, Issue: 7, pp. 903-907, Jul. 2018.

電子全文 電子全文(網際網路公開日期:20280823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊