|
[1] H.-R. Lee, O. Kim, G. Ahn, and D. K. Jeong, “A Low Jitter 5000 ppm Spread Spectrum Clock Generator for Multi-channel SATA Transceiver in 0.18um CMOS,” IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, pp. 160-161, 2005. [2] D.-S. Shen and S.-I. Liu, “A Low-Jitter Spread Spectrum Clock Generator Using FDMP,” IEEE Tran. Circuits Syst. II, vol. 54, no. 11, pp. 979-983, Nov. 2007. [3] S.-Y. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111-3119, Nov. 2009. [4] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A Δ-∑ PLL-based spread spectrum clock generator with a ditherless fractional topology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 1, pp. 51-59, Jan. 2009. [5] Y.-H. Kao and Y.-B. Hsieh, “A low-power and high-precision spread spectrum clock generator for serial advanced technology attachment applications using two-point modulation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 2, pp. 245-254, May 2009. [6] D. D. Caro, C. A. Romani, N. Petra, A. G. M. Strollo, and C. Parrella, “A 1.27 GHz, all-digital spread spectrum clock generator/synthesizer in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1048-1060, May 2010. [7] S. Hwang, M. Song, Y.-H. Kwak, I. Jung, and C. Kim, “A 3.5 GHz Spread-Spectrum Clock Generator With a Memoryless Newton-Raphson Modulation Profile,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1199-1208, May 2012. [8] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst, I: Reg. Papers, Vol. 57 Issue: 10, pp. 2577-2587, Oct. 2010. [9] K.-H. Cheng, C.-L. Hung, and C.-H. Chang, “A 0.77 ps RMS jitter 6-GHz spread-spectrum clock generator using a compensated phase rotating technique,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1198-1213, May 2011. [10] H. Sun, K. Sobue, K. Hamashita, T. Anand and U. Moon, "A 951-fsrms Period Jitter 3.2% Modulation Range in-Band Modulation Spread-Spectrum Clock Generator," IEEE J. Solid-State Circuits, vol. 55, no. 2, pp. 426-438, Feb. 2020. [11] C.-H. Weng and T.-C. Lee, “A 6-GHz Self-Oscillating Spread-Spectrum Clock Generator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 5, pp. 1264-1273, May 2013. [12] M. Song, S. Ahn, I. Jung, Y. Kim, and C. Kim, “Piecewise Linear Modulation Technique for Spread Spectrum Clock Generation,” IEEE Trans. VLSI Syst., pp. 1234-1245, July. 2013. [13] K. H. Cheng, C. L. Hung, C. H. Chang, Y. L. Lo, W. B. Yang, and J. W. Miaw, “A Spread-Spectrum Clock Generator Using Fractional-N PLL Controlled Delta-Sigma Modulator for Serial-ATA III,” IEEE Design and Diagnostics of Electronic Circuits and Systems, pp. 1-4, Apr. 2008. [14] I. T. Lee, S. H. Ku, and S. I. Liu, “An all-digital spread spectrum clock generator with self-calibrated bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2813-2822, Nov. 2013. [15] T. Kawamoto, M. Suzuki, and T. Noto, “1.9-ps jitter, 10.0 dBm EMI reduction spread-spectrum clock generator with autocalibration VCO technique for serial-ATA application,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 5, pp. 1118-1126, May. 2014. [16] H. Ryu, S. Park, E.-T. Sung, S.-G. Lee, D. Baek, “A Spread Spectrum Clock Generator Using a Programmable Linear Frequency Modulator for Multipurpose Electronic Devices,” IEEE Trans. Electromagn. Compat., vol. 57, no. 6, pp. 1447-1456, Dec. 2015. [17] C.-C. Chung, D. Sheng, W.-D. Ho, “A Low-Cost Low-Power All-Digital Spread-Spectrum Clock Generator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 5, pp. 983-987, Feb. 2015. [18] S. Sadrafshari, R. Eskandari, K. Hadidi, A. Khoei, “Low-jitter spread spectrum clock generator using charge pump frequency detector in 0.18 μm CMOS for USB3.1 transceivers,” IET Circuits, Devices & Systems, vol. 12, Issue. 1, pp. 99-107, Jan. 2018. [19] W.G. Wong, “A Spread-Spectrum Clock Generator Using a Phase-Compensation Fractional Phase-Locked Loop Technique”, Electrical Engineering, National Chung Hsing University, 2006. [20] H.-H. Chang, I.-H. Hua, and S.-I. Liu, “A Spread-Spectrum Clock Generator with Triangular Modulation,” IEEE J. Solid-State Circuits, vol.30, no. 4, pp. 673-676, Apr. 2003. [21] S.-G. Bae, G. Kim and C. Kim, "A 5-GHz Subsampling PLL-Based Spread-Spectrum Clock Generator by Calibrating the Frequency Deviation," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 64, no. 10, pp. 1132-1136, Oct. 2017. [22] Y.-H. Choi, B. Kim, J.-Y. Sim and H.-J. Park, "A Phase-Interpolator-Based Fractional Counter for All-Digital Fractional-N Phase-Locked Loop," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 64, no. 3, pp. 249-253, March 2017. [23]D. De Caro, “Optimal discontinuous frequency modulation for spread-spectrum clocking,” IEEE Trans. Electromagn. Compat., vol. 55, no. 5, pp. 891-900, Oct. 2013. [24] D. De Caro, F. Tessitore, G. Vai, N. Imperato, N. Petra, E. Napoli, C. Parrella, and A. G. M. Strollo, “A 3.3 GHz Spread-Spectrum Clock Generator Supporting Discontinuous Frequency Modulations in 28 nm CMOS, ” IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 2074-2089, Sep. 2015 [25] F. Tang et al., "A 32-Step Phase-Compensated Spread-Spectrum RF-PLL With 19.44-dB EMI Reduction and 10-fs Extra RMS Jitter," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 4, pp. 1564-1575, April 2020. [26] F. Pareschi, G. Setti and R. Rovatti "EMI Reduction via Spread Spectrum in DC/DC Converters: State of the Art, Optimization, and Tradeoffs", Access, IEEE, Vol. 3, pp. 2857-2874, 2015. [27] Z.-X. Yang “Low-Power 6-G bit/s Spread Spectrum Clock Generator with Process Compensation Scheme,” Electrical Engineering, National Taipei University, 2014. [28] P.-Y. Liu “A PVT Insensitive 6-Gbits/s Spread Spectrum Clock Generator Using Phase Compensation Scheme,” Electrical Engineering, National Taipei University, 2018. [29] Y.-H. Chen “A SATA-III Spread Spectrum Clock Generator Using True Modulus Divider and Multi-band Calibration,” Electrical Engineering, National Taipei University, 2020. [30] P.-Y. Li “A 6GHz Low-Power Spread Spectrum Clock Generator with True Modulus Divider and Multi-Phase Scheme,” Electrical Engineering, National Taipei University, 2022. [31] H.-Y. Huang, J.-C. Liu, F.-C. Tsai, K.-H. Lee, K.-Y. Chen “A 12-Phase and 5-GHz PLL with a Subfeedback Loop Technique,” Circuits, Systems, and Signal Processing, Sep. 2022. [32] S.-I. Liu and C.-Y. Yang, “A Phase Locking Loop,” Tsang Hai, 2006. [33] W. B. Wilson, U.-K. Moon, “A CMOS Self-Calibrating Frequency Synthesizer,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437–1444, Oct. 2000. [34] T.-H. Lin and Y.-J. Lai, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340-349, Feb. 2007. [35] Y.-H. Chuang, S.-L. Jang, J.-F. Lee, and S.-H. Lee, “A Low Voltage 900-MHz Voltage Controlled Ring Oscillator With Wide Liming,” IEEE Asia-Pacific Conf. on Circuits and Systems Tech. Papers, pp. 301-304, 2004. [36] A. Aktas and M. Ismail, “CMOS PLL calibration techniques,” IEEE Circuits and Devices Magazine, vol. 20, Issue. 5, pp. 6-11, Oct. 2004. [37] H.-Y. Huang, S.-F. Ho, F.-Y. Su, “A Dual-Modulus Prescaler Using Double-Edge-Triggered D-Flip-Flops,” in Proc. IEEE Midwest Symposium on Circuits and Systems, pp. 209-212, 2003. [38] S. -G. Bae, S. Hwang, J. Song, Y. Lee and C. Kim, "A ΔΣ Modulator-Based Spread-Spectrum Clock Generator with Digital Compensation and Calibration for Phase-Locked Loop Bandwidth," IEEE Trans. on Circuits and Syst. II: Express Briefs, vol. 66, no. 2, pp. 192-196, Feb. 2019.903-907, Jul. 2018. [39] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001. [40] B. Razavi, “Design of Integrated Circuits for Optical Communications, ” WILEY, 2012. [41] B. Razavi, “Design of CMOS Phase-Locked Loops From Circuit Level to Architecture Level, ” Cambridge, 2020. [42] B. Razavi, “The Crystal Oscillator A Circuit for All Seasons, ” IEEE Solid-State Circuits Magazine, pp. 7-9, Spring 2017. [43] B. Razavi, Y. Chang, A. Manian, L. Kong “A 32-mW 40-Gb/s CMOS NRZ Transmitter, ” IEEE 2018. [44] B. Razavi, “Jitter-Power Trade-Offs in PLLs, ” IEEE Trans. Circuits Syst. I: Reg. Papers, Vol. 68, No. 4, pp. 1381-1387, Apr. 2021. [45] B. Razavi, “Analysis, Modeling, and Simulation of Phase Noise in Monolithic Voltage-Controlled Oscillators ” IEEE Custom Integated Circuit Conference, pp. 14.5.1-14.5.4, 1995. [46] B. Razavi, “The Ring Oscillator,” IEEE Solid-State Circuits Magazine, pp. 10-14, Fall 2019. [47] X. Jin, W. Park, D.-S. Kang, Y. Ko, K.-W. Kwon and J.-H. Chun, “A 4-GHz Sub-Harmonically Injection-Locked Phase-Locked Loop with Self-Calibrated Injection Timing and Pulsewidth,” IEEE J. Solid-State Circuits, Vol. 55, No. 10, pp. 2724-2733, oct. 2020. [48] Y. Lee, T. Seong, S. Yoo and J. Choi, “A Low-Jitter and Low-Reference-Spur Ring-VCOBased Switched-Loop Filter PLL Using a Fast Phase-Error Correction Technique,” IEEE J. Solid-State Circuits, Vol. 53, No. 4, pp. 1192-1202, Apr. 2018. [49] S. S. Nagam and P. R. Kinget, “A Low-Jitter Ring-Oscillator Phase-Locked Loop Using Feedforward Noise Cancellation with a Sub-Sampling Phase Detector,” IEEE J. Solid-State Circuits, Vol. 53, No. 3, pp. 703-714, Mar. 2018. [50] Z. Yang, Y. Chen, P.-I. Mak, Fellow, and Rui P. Martins, “A 0.003-mm2 440fsRMS-Jitter and −64dBc-Reference-Spur Ring-VCO-Based Type-I PLL Using a Current-Reuse Sampling Phase Detector in 28-nm CMOS,” IEEE Trans. Circuits Syst. I: Reg. Papers, Vol. 68, Issue:6, pp. 2307-2316, Jun. 2021. [51] M. Jalalifar and G.-S. Byun, “A Low-Jitter Ring-Oscillator Phase-Locked Loop Using Feedforward Noise Cancellation with a Sub-Sampling Phase Detector in 28-nm CMOS,” IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 65, Issue: 7, pp. 903-907, Jul. 2018.
|