|
參考文獻 Ait-Mlouk, A., & Jiang, L. (2020). KBot: a knowledge graph based chatBot for natural language understanding over linked data. IEEE Access, 8, 149220-149230. Atzeni, P., Bugiotti, F., Cabibbo, L., & Torlone, R. (2020). Data modeling in the NoSQL world. Computer Standards & Interfaces, 67, 103149. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: a nucleus for a web of open data. The semantic web, 722-735. Babić, A., Jakšić, D., & Poščić, P. (2019). Querying data in NoSQL databases. Zbornik Veleučilišta u Rijeci, 7(1), 257-270. Cai, X., Xie, L., Tian, R., & Cui, Z. (2022). Explicable recommendation based on knowledge graph. Expert Systems with Applications, 200, 117035. Cao, Z., Qiao, X., Jiang, S., & Zhang, X. (2019). An efficient knowledge-graph-based web service recommendation algorithm. Symmetry, 11(3), 392. Chen, P., Lu, Y., Zheng, V. W., Chen, X., & Yang, B. (2018). Knowedu: a system to construct knowledge graph for education. IEEE Access, 6, 31553-31563. Chen, X., Xie, H., Li, Z., & Cheng, G. (2021). Topic analysis and development in knowledge graph research: a bibliometric review on three decades. Neurocomputing, 461, 497-515. Cheng, Y., Ding, P., Wang, T., Lu, W., & Du, X. (2019). Which category is better: benchmarking relational and graph database management systems. Data Science and Engineering, 4, 309-322. Chi, Y., Qin, Y., Song, R., & Xu, H. (2018). Knowledge graph in smart education:a case study of entrepreneurship scientific publication management. Sustainability, 10(4), 995. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. Duan, C., You, H., Cai, Z., & Zhang, Z. (2020). Research progress of knowledge graph embedding. International Conference on Artificial Intelligence and Security: 6th International Conference, ICAIS 2020, Hohhot, China, July 17–20, 2020, Proceedings, Part I 6 (pp. 184-194). Färber, M., Bartscherer, F., Menne, C., & Rettinger, A. (2018). Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web, 9(1), 77-129. Gong, F., Wang, M., Wang, H., Wang, S., & Liu, M. (2021). SMR: medical knowledge graph embedding for safe medicine recommendation. Big Data Research, 23, 100174. Holzschuher, F., & Peinl, R. (2016). Querying a graph database–language selection and performance considerations. Journal of Computer and System Sciences, 82(1), 45-68. Jian, M., Zhang, C., Fu, X., Wu, L., & Wang, Z. (2022). Knowledge-aware multispace embedding learning for personalized recommendation. Sensors, 22(6), 2212. Jiang, Z., Chi, C., & Zhan, Y. (2021a). Let knowledge make recommendations for you. IEEE Access, 9, 118194-118204. Jiang, Z., Chi, C., & Zhan, Y. (2021b). Research on medical question answering system based on knowledge graph. IEEE Access, 9, 21094-21101. Küçükkeçeci, C., & Yazıcı, A. (2018). Big data model simulation on a graph database for surveillance in wireless multimedia sensor networks. Big Data Research, 11, 33-43. Kaiser, H. F. (1974). An index of factorial simplicity. psychometrika, 39(1), 31-36. Kondylakis, H., Tsirigotakis, D., Fragkiadakis, G., Panteri, E., Papadakis, A., Fragkakis, A., Tzagkarakis, E., Rallis, I., Saridakis, Z., & Trampas, A. (2020). R2D2: A DBpedia chatbot using triple-pattern like queries. Algorithms, 13(9), 217. Kotiranta, P., Junkkari, M., & Nummenmaa, J. (2022). Performance of graph and relational databases in complex queries. Applied Sciences, 12(13), 6490. Li, J., Luo, Z., Huang, H., & Ding, Z. (2022). Towards knowledge-based tourism chinese question answering system. Mathematics, 10(4), 664. Lu, W., & Altenbek, G. (2021). A recommendation algorithm based on fine-grained feature analysis. Expert Systems with Applications, 163, 113759. Lv, Q., Zhang, Y., Li, Y., & Yu, Y. (2022). Research on a health care personnel training model based on multilayered knowledge mapping for the integration of Nursing courses and examinations. Journal of Healthcare Engineering, 2022. Pal, D., & Vanijja, V. (2020). Perceived usability evaluation of Microsoft Teams as an online learning platform during COVID-19 using system usability scale and technology acceptance model in India. Children and youth services review, 119, 105535. Pan, Z., & Chen, H. (2021). Collaborative knowledge-enhanced recommendation with self-supervisions. Mathematics, 9(17), 2129. Qi, P., Sun, Y., Luo, H., & Guizani, M. (2020). Scratch-dkg: a framework for constructing scratch domain knowledge graph. IEEE Transactions on Emerging Topics in Computing, 10(1), 170-185. Saad, M., Zhang, Y., Tian, J., & Jia, J. (2023). A graph database for life cycle inventory using Neo4j. Journal of Cleaner Production, 393, 136344. Schäfer, J., Tang, M., Luu, D., Bergmann, A. K., & Wiese, L. (2022). Graph4Med: a web application and a graph database for visualizing and analyzing medical databases. BMC bioinformatics, 23(1), 537. Sheu, H.-S., Chu, Z., Qi, D., & Li, S. (2021). Knowledge-guided article embedding refinement for session-based news recommendation. IEEE Transactions on Neural Networks and Learning Systems. Shi, D., Wang, T., Xing, H., & Xu, H. (2020). A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning. Knowledge-Based Systems, 195, 105618. Tan, J., Qiu, Q., Guo, W., & Li, T. (2021). Research on the construction of a knowledge graph and knowledge reasoning model in the field of urban traffic. Sustainability, 13(6), 3191. Tomeo, P., Fernández-Tobías, I., Cantador, I., & Di Noia, T. (2017). Addressing the cold start with positive-only feedback through semantic-based recommendations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(Suppl. 2), 57-78. Turki, H., Hadj Taieb, M. A., Shafee, T., Lubiana, T., Jemielniak, D., Aouicha, M. B., Labra Gayo, J. E., Youngstrom, E. A., Banat, M. a., & Das, D. (2022). Representing COVID-19 information in collaborative knowledge graphs: the case of Wikidata. Semantic Web(Preprint), 1-32. Vo, T. (2022). An integrated network embedding with reinforcement learning for explainable recommendation. Soft Computing, 26(8), 3757-3775. Xiao, Y., Zhang, L., Huang, J., Zhang, L., & Wan, J. (2022). An information retrieval-based joint system for complex chinese knowledge graph question answering. Electronics, 11(19), 3214. Xiao, Z., & Zhang, C. (2021). Construction of meteorological simulation knowledge graph based on deep learning method. Sustainability, 13(3), 1311. Xu, D., Zhu, H., Huang, Y., Jin, Z., Ding, W., Li, H., & Ran, M. (2023). Vision-knowledge fusion model for multi-domain medical report generation. Information Fusion, 97, 101817. Yan, C., Chen, Y., & Zhou, L. (2019). Differentiated fashion recommendation using knowledge graph and data augmentation. IEEE Access, 7, 102239-102248. Ye, Q., Hsieh, C.-Y., Yang, Z., Kang, Y., Chen, J., Cao, D., He, S., & Hou, T. (2021). A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nature communications, 12(1), 1-12. Yoo, S., & Jeong, O. (2021). EP-Bot: empathetic chatbot using auto-growing knowledge graph. Computers, Materials & Continua, 67(3). Yuan, H., & Deng, W. (2021). Doctor recommendation on healthcare consultation platforms: an integrated framework of knowledge graph and deep learning. Internet Research, 32(2), 454-476. Zhang, X., Liu, X., Li, X., & Pan, D. (2017). MMKG: an approach to generate metallic materials knowledge graph based on DBpedia and Wikipedia. Computer Physics Communications, 211, 98-112. Zhang, Z. (2021). A method of recommending physical education network course resources based on collaborative filtering technology. Scientific Programming, 2021, 1-9. Zhao, H., Pan, Y., & Yang, F. (2020). Research on information extraction of technical documents and construction of domain knowledge graph. IEEE Access, 8, 168087-168098. 技能分享 | 你不可不知的知識圖譜應用. (2020, July 7). SOURCEZONES. https://sourcezones.net/2020/07/07/02/ 知識圖譜是什麼? (2020, December 14). 人人焦點. https://ppfocus.com/0/ed51dbad2.html
|