跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石依婷
研究生(外文):Yi-Ting Shih
論文名稱:影響數位內容創作者採用NFT平台之因素
論文名稱(外文):Exploring the Factors Affecting Digital Content Creator’s Adoption of NFT Platforms
指導教授:蕭國倫蕭國倫引用關係
指導教授(外文):Kuo-Lun Hsiao
口試委員:陳鴻仁陳牧言
口試日期:2023-07-20
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:101
中文關鍵詞:數位內容創作者非同質化代幣(NFT)資訊系統成功模式創新擴散理論採用意圖
外文關鍵詞:Digital content creatorsnon-fungible tokens (NFTs)Information System Success ModelInnovation Diffusion TheoryAdoption intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著Web 3.0的興起,非同質化代幣(NFT)為數位內容創作者帶來了新的機會。NFT平台作為一種基於區塊鏈技術的創新平台,重新定義了作品所有權和價值分享,同時克服了過去數位內容領域所面臨的挑戰。然而,採用NFT平台也伴隨著一系列新的挑戰和風險。然而,採用NFT平台也伴隨著一系列新的挑戰和風險。因此,本研究旨在深入研究影響數位內容創作者選擇採用NFT平台的因素,並將資訊系統成功模式與創新擴散理論的創新感知特徵融合,同時納入個人層面的影響因素。
研究框架涵蓋了涵蓋資訊品質、系統品質、相對優勢、相容性、複雜性、感知風險、網路外部性以及滿意度和採用意圖等九個構面,以解釋NFT平台的採用情況。本研究採用網路問卷調查,以數位內容創作者為對象,透過在不同媒體平台上分發問卷,最終共收集246份有效問卷進行分析。研究結果顯示,資訊品質、系統品質、相對優勢和相容性對滿意度有正向影響,而複雜性和感知風險則對滿意度有負向影響。此外,相對優勢、相容性和滿意度對採用意圖有正向影響。總體而言,本研究探討了影響數位內容創作者採用NFT平台的關鍵因素,並提供了對平台提供商的建議,以促進其可持續發展。
With the rise of Web 3.0, Non-fungible tokens (NFTs) have brought new opportunities for digital content creators. NFT platform, as innovative platforms based on blockchain technology, redefine ownership and value sharing of creative works, while also addressing challenges previously faced in the digital content landscape. However, adopting NFT platforms comes with a set of novel challenges and risks. Therefore, this study aims to delve into the factors influencing digital content creators' adoption of NFT platforms, integrating the Information System Success Model with the Innovation Diffusion Theory's Perceived Attributes of Innovation, and incorporating individual-level influences.
The research framework encompasses nine dimensions, including information quality, system quality, relative advantage, compatibility, complexity, perceived risk, network externality, satisfaction, and adoption intention, to explain the adoption of NFT platforms. This study employed an online questionnaire survey targeting digital content creators. Through distributing questionnaires on various media platforms, a total of 246 valid responses were collected for analysis. The research findings indicate that information quality, system quality, relative advantage, and compatibility have a positive impact on satisfaction, while complexity and perceived risk have a negative impact on satisfaction. Furthermore, relative advantage, compatibility, and satisfaction have a positive impact on adoption intention. Overall, this study explores the critical factors influencing digital content creators' adoption of NFT platforms and provides recommendations for platform providers to foster their sustainable development.
目次
摘要 i
ABSTRACT ii
誌謝 iii
目次 iv
表目次 vi
圖目次 vii
第一章、緒論 1
第一節、研究背景 1
第二節、研究動機 4
第三節、研究目的 5
第四節、研究流程 6
第二章、文獻探討 7
第一節、非同質化代幣(NFT) 7
2-1-1 區塊鏈技術 7
2-1-2 加密貨幣與NFT 8
2-1-3 NFT的發展 9
2-1-4 NFT的文獻 13
第二節、NFT交易平台 17
2-2-1 平台架構和功能 17
2-2-2 對創作者的影響 19
第三節、採用NFT平台 22
2-3-1 資訊系統成功模式 22
2-3-2 創新擴散理論 24
2-3-3 網路外部性 26
2-3-4 感知風險 27
2-3-5 滿意度和採用意圖 28
第三章、研究方法與假設 30
第一節、研究架構 30
第二節、研究假設 31
第三節、研究變數定義與衡量 35
第四節、研究設計 38
3-4-1 問卷設計 38
3-4-2 研究對象與資料收集 40
第五節、資料分析方法 41
第四章、資料分析與結果 44
第一節、探索性因素分析 44
第二節、敘述性統計 47
4-2-1 背景資料 47
4-2-2 使用情形描述 48
4-2-3 研究變數之敘述統計 50
第三節、測量模型分析 52
4-3-1 信效度分析 52
4-3-2 共線性分析 57
第四節、結構模型分析 59
4-4-1 模型解釋力與適配度 59
4-4-2 路徑分析 60
第五章、結果與討論 65
第六章、結論與建議 72
第一節、結論和貢獻 72
第二節、理論和實務意涵 75
第三節、研究限制與未來建議 76
參考文獻 77
附錄 96


表目次
表1、相關NFT文獻整理 15
表2、NFT平台可支援的NFT種類及區塊鏈 17
表3、不同區塊鏈技術的優缺點 18
表4、NFT平台的功能及服務 19
表5、本研究假說之彙整 34
表6、操作型定義 35
表7、本研究衡量題項 36
表8、KMO與Bartlett的測量檢定 44
表9、探索性因素刪題後之結果 45
表10、共同方法偏誤之檢測 46
表11、受測者之背景資料分佈 47
表12、受測者之使用行為情形 49
表13、研究變數之各題項敘述統計 50
表14、本研究各構面之Cronbach’s α值與CR值 52
表15、本研究之收斂效度與因素負荷量 53
表16、本研究之區別效度(Fornell-Larcker) 54
表17、本研究之交叉因素負荷矩陣 55
表18、本研究之HTMT 56
表19、本研究各構面之間的VIF值 57
表20、本研究各題項之間的VIF值 58
表21、本研究模型之解釋力 59
表22、本研究模型之配適度 59
表23、本研究之路徑分析與假說結果 60
表24、本研究潛在變數之間接影響效果表 62
表25、本研究之總影響效果表 62
表26、本研究假說檢定結果表 64


圖目次
圖1、本研究之研究流程圖 6
圖2、CryptoPunks的NFT 9
圖3、CryptoKitties的虛擬貓咪 10
圖4、藝術家Beeple的作品《Everydays: The First 5000 Days》 11
圖5、BAYC的猴子NFT 12
圖6、NFT市場2022年第三季度報告-按美元交易量分類NFT 13
圖7、更新後的資訊系統成功模型 (Delone & McLean, 2003) 23
圖8、本研究架構圖 30
圖9、NFT創建與交易流程圖(本研究整理) 39
圖10、本研究路徑分析圖 63
參考文獻

Ab Hamid, M. R., Sami, W., & Mohmad Sidek, M. H. (2017). Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. Journal of Physics: Conference Series, 890. https://doi.org/10.1088/1742-6596/890/1/012163
Abbate, T., Vecco, M., Vermiglio, C., Zarone, V., & Perano, M. (2022). Blockchain and art market: resistance or adoption? Consumption Markets & Culture, 25(2), 105-123. https://doi.org/10.1080/10253866.2021.2019026
Afthanorhan, A., Ghazali, P. L., & Rashid, N. (2021). Discriminant Validity: A Comparison of CBSEM and Consistent PLS using Fornell & Larcker and HTMT Approaches. Journal of Physics: Conference Series, 1874(1). https://doi.org/10.1088/1742-6596/1874/1/012085
Agag, G., & El-Masry, A. A. (2016). Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust. Computers in Human Behavior, 60, 97-111. https://doi.org/10.1016/j.chb.2016.02.038
Agi, M. A. N., & Jha, A. K. (2022). Blockchain technology in the supply chain: An integrated theoretical perspective of organizational adoption. International Journal of Production Economics, 247, 108458. https://doi.org/10.1016/j.ijpe.2022.108458
Ahmad, M., Khan, I., Shahzad Khan, M. Q., Jabeen, G., Jabeen, H. S., & Işık, C. (2023). Households' perception-based factors influencing biogas adoption: Innovation diffusion framework. Energy, 263, 126155. https://doi.org/10.1016/j.energy.2022.126155
Ahmad, S., Miskon, S., Alkanhal, T. A., & Tlili, I. (2020). Modeling of Business Intelligence Systems Using the Potential Determinants and Theories with the Lens of Individual, Technological, Organizational, and Environmental Contexts-A Systematic Literature Review. Applied Sciences, 10(9). https://doi.org/10.3390/app10093208
Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405-420. https://doi.org/10.1016/j.elerap.2004.05.001
Ajao, Q., Sadeeq, L. G., Casady, A., & Prio, M. H. (2023). Drivers of Mobile Payments Acceptance: The Impact of Networks Externalities. https://doi.org/10.20944/preprints202305.1555.v1
Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, 101293. https://doi.org/10.1016/j.techsoc.2020.101293
Al-Shaibany, N., & Almekhlafi, S. (2021). The Literature Review of Blockchain Adoption. Asian Journal of Research in Computer Science, 29-50. https://doi.org/10.9734/ajrcos/2021/v7i230177
Al Mulhem, A., & Wang, S. (2020). Investigating the effects of quality factors and organizational factors on university students’ satisfaction of e-learning system quality. Cogent Education, 7(1), 1787004. https://doi.org/10.1080/2331186x.2020.1787004
Alazab, M., Alhyari, S., Awajan, A., & Abdallah, A. B. (2020). Blockchain technology in supply chain management: an empirical study of the factors affecting user adoption/acceptance. Cluster Computing, 24(1), 83-101. https://doi.org/10.1007/s10586-020-03200-4
Albaom, M. A., Sidi, F., Jabar, M. A., Abdullah, R., Ishak, I., Yunikawati, N. A., Priambodo, M. P., Nusari, M. S., & Ali, D. A. (2022). The Moderating Role of Personal Innovativeness in Tourists’ Intention to Use Web 3.0 Based on Updated Information Systems Success Model. Sustainability, 14(21). https://doi.org/10.3390/su142113935
Albayati, H., Alistarbadi, N., & Rho, J. J. (2023). Assessing engagement decisions in NFT Metaverse based on the Theory of Planned Behavior (TPB). Telematics and Informatics Reports, 10. https://doi.org/10.1016/j.teler.2023.100045
Albayati, H., Kim, S. K., & Rho, J. J. (2020). Accepting financial transactions using blockchain technology and cryptocurrency: A customer perspective approach. Technology in Society, 62, 101320. https://doi.org/10.1016/j.techsoc.2020.101320
Alexander, B., & Bellandi, N. (2022). Limited or Limitless? Exploring the Potential of NFTs on Value Creation in Luxury Fashion. Fashion Practice, 14(3), 376-400. https://doi.org/10.1080/17569370.2022.2118969
Ali, O., Momin, M., Shrestha, A., Das, R., Alhajj, F., & Dwivedi, Y. K. (2023). A review of the key challenges of non-fungible tokens. Technological Forecasting and Social Change, 187. https://doi.org/10.1016/j.techfore.2022.122248
Alsalim, M. S. H., & Ucan, O. N. (2023). Secure banking and international trade digitization using blockchain. Optik, 272. https://doi.org/10.1016/j.ijleo.2022.170269
Amponsah, A. A., Adekoya, A. F., & Weyori, B. A. (2022). Improving the Financial Security of National Health Insurance using Cloud-Based Blockchain Technology Application. International Journal of Information Management Data Insights, 2(1), 100081. https://doi.org/10.1016/j.jjimei.2022.100081
Andrew, J., Isravel, D. P., Sagayam, K. M., Bhushan, B., Sei, Y., & Eunice, J. (2023). Blockchain for healthcare systems: Architecture, security challenges, trends and future directions. Journal of Network and Computer Applications, 215. https://doi.org/10.1016/j.jnca.2023.103633
Angelina, R. J., Hermawan, A., & Suroso, A. I. (2019). Analyzing E-Commerce Success using DeLone and McLean Model. Journal of Information Systems Engineering and Business Intelligence, 5(2). https://doi.org/10.20473/jisebi.5.2.156-162
Anitha, V., Marquez Caro, O. J., Sudharsan, R., Yoganandan, S., & Vimal, M. (2023). Transparent voting system using blockchain. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100620
Ante, L. (2022). Non-fungible token (NFT) markets on the Ethereum blockchain: temporal development, cointegration and interrelations. Economics of Innovation and New Technology. https://doi.org/10.1080/10438599.2022.2119564
Arruda Filho, E. J. M., Simões, J. D. S., & De Muylder, C. F. (2019). The low effect of perceived risk in the relation between hedonic values and purchase intention. Journal of Marketing Management, 36(1-2), 128-148. https://doi.org/10.1080/0267257x.2019.1697725
Asare-Nuamah, P., Antwi-Agyei, P., Dick-Sagoe, C., & Adeosun, O. T. (2022). Climate change perception and the adoption of innovation among mango plantation farmers in the Yilo Krobo municipality, Ghana. Environmental Development, 44, 100761. https://doi.org/10.1016/j.envdev.2022.100761
Ashghar, S. A., & Nurlatifah, H. (2020). Analisis Pengaruh Perceived Ease of Use, Perceived Usefulness, dan Perceived Risk terhadap Keinginan Membeli Kembali melalui e-Trust dan s-Satisfaction (Studi Kasus Pengguna Gopay pada Transaksi UMKM). Jurnal Al Azhar Indonesia Seri Ilmu Sosial, 1(1). https://doi.org/10.36722/jaiss.v1i1.459
Ashman, R., Patterson, A., & Brown, S. (2018). ‘Don't forget to like, share and subscribe’: Digital autopreneurs in a neoliberal world. Journal of Business Research, 92, 474-483. https://doi.org/10.1016/j.jbusres.2018.07.055
Awad, R., Aljaafreh, A., & Salameh, A. (2022). Factors Affecting Students’ Continued Usage Intention of E-Learning During COVID-19 Pandemic: Extending Delone & Mclean IS Success Model. International Journal of Emerging Technologies in Learning (iJET), 17(10), 120-144. https://doi.org/10.3991/ijet.v17i10.30545
Bauer, R. A. (1967). Consumer behavior as risk taking. In Marketing: Critical perspectives on business and management (pp. 13-21).
Belanche, D., Guinalíu, M., & Albás, P. (2022). Customer adoption of p2p mobile payment systems: The role of perceived risk. Telematics and Informatics, 72, 101851. https://doi.org/10.1016/j.tele.2022.101851
Belk, R. W. (2013). Extended Self in a Digital World: Table 1. Journal of Consumer Research, 40(3), 477-500. https://doi.org/10.1086/671052
besancia. (2022). NFT Market Report Q3 2022: Build Market is Here. NonFungible. Retrieved May 13, 2023 from https://nonfungible.com/news/corporate/nft-market-report-q3-2022
Bhushan, B., Sinha, P., Sagayam, K. M., & J, A. (2021). Untangling blockchain technology: A survey on state of the art, security threats, privacy services, applications and future research directions. Computers & Electrical Engineering, 90, 106897. https://doi.org/10.1016/j.compeleceng.2020.106897
Bonifacio, R., Hair, L., & Wohn, D. Y. (2021). Beyond fans: The relational labor and communication practices of creators on Patreon. New Media & Society. https://doi.org/10.1177/14614448211027961
Brown, A. (2021). Beeple NFT Sells For $69.3 Million, Becoming Most-Expensive Ever. Forbes. Retrieved 2023, May 16 from https://www.forbes.com/sites/abrambrown/2021/03/11/beeple-art-sells-for-693-million-becoming-most-expensive-nft-ever/?sh=34679fac2448
Brunner, T. A., Stöcklin, M., & Opwis, K. (2008). Satisfaction, image and loyalty: new versus experienced customers. European Journal of Marketing, 42(9/10), 1095-1105. https://doi.org/10.1108/03090560810891163
Busalim, A. H., Ghabban, F., & Hussin, A. R. C. (2021). Customer engagement behaviour on social commerce platforms: An empirical study. Technology in Society, 64, 101437. https://doi.org/10.1016/j.techsoc.2020.101437
Cabeza-Ramírez, L. J., Sánchez-Cañizares, S. M., Santos-Roldán, L. M., & Fuentes-García, F. J. (2022). Impact of the perceived risk in influencers' product recommendations on their followers' purchase attitudes and intention. Technological Forecasting and Social Change, 184. https://doi.org/10.1016/j.techfore.2022.121997
Cardozo, R. N. (1965). An Experimental Study of Customer Effort, Expectation, and Satisfaction. Journal of Marketing Research, 2(3), 244-249. https://doi.org/10.2307/3150182
Cennamo, C. (2016). Building the Value of Next-Generation Platforms: The Paradox of Diminishing Returns. Journal of Management, 44(8), 3038-3069. https://doi.org/10.1177/0149206316658350
Cennamo, C., Ozalp, H., & Kretschmer, T. (2018). Platform Architecture and Quality Trade-offs of Multihoming Complements. Information Systems Research, 29(2), 461-478. https://doi.org/10.1287/isre.2018.0779
Chalmers, D., Fisch, C., Matthews, R., Quinn, W., & Recker, J. (2022). Beyond the bubble: Will NFTs and digital proof of ownership empower creative industry entrepreneurs? Journal of Business Venturing Insights, 17, e00309. https://doi.org/10.1016/j.jbvi.2022.e00309
Chandra, Y. (2022). Non-fungible token-enabled entrepreneurship: A conceptual framework. Journal of Business Venturing Insights, 18, e00323. https://doi.org/10.1016/j.jbvi.2022.e00323
Chen, J., & Friedmann, D. (2022). Jumping from mother monkey to bored ape: the value of NFTs from an artist’s and intellectual property perspective. Asia Pacific Law Review, 31(1), 100-122. https://doi.org/10.1080/10192557.2022.2117485
Chen, X., Miraz, M. H., Gazi, M. A. I., Rahaman, M. A., Habib, M. M., & Hossain, A. I. (2022). Factors affecting cryptocurrency adoption in digital business transactions: The mediating role of customer satisfaction. Technology in Society, 70. https://doi.org/10.1016/j.techsoc.2022.102059
Chohan, R., & Paschen, J. (2023). NFT marketing: How marketers can use nonfungible tokens in their campaigns. Business Horizons, 66(1), 43-50. https://doi.org/10.1016/j.bushor.2021.12.004
Chopdar, P. K., Korfiatis, N., Sivakumar, V. J., & Lytras, M. D. (2018). Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Computers in Human Behavior, 86, 109-128. https://doi.org/10.1016/j.chb.2018.04.017
Church, J., Gandal, N., & Krause, D. P. (2003). Indirect Network Effects and Adoption Externalities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.369120
Colicev, A. (2023). How can non-fungible tokens bring value to brands. International Journal of Research in Marketing, 40(1), 30-37. https://doi.org/10.1016/j.ijresmar.2022.07.003
Cordasco, C., Gherhes, C., Brooks, C., & Vorley, T. (2021). An institutional taxonomy of adoption of innovation in the classic professions. Technovation, 107, 102272. https://doi.org/10.1016/j.technovation.2021.102272
Cork, A. G., Joinson, A., Smith, L. G. E., Ellis, D. A., & Stanton Fraser, D. (2023). Motivations for Collecting Digital NFT Fashion Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany. https://doi.org/10.1145/3544549.3585824
Cox, D. F., & Rich, S. U. (1964). Perceived risk and consumer decision-making—the case of telephone shopping. Journal of Marketing Research, 1(4), 32-39. https://doi.org/10.1177/00222437640010040
Cozzio, C., Viglia, G., Lemarie, L., & Cerutti, S. (2023). Toward an integration of blockchain technology in the food supply chain. Journal of Business Research, 162. https://doi.org/10.1016/j.jbusres.2023.113909
CREIGHTON, J. (2022). NFT Timeline: The Beginnings and History of NFTs. NFT Now. Retrieved 2023, Jun 4 from https://nftnow.com/guides/nft-timeline-the-beginnings-and-history-of-nfts/
Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Prentice Hall/Pearson Education.
Dahlberg, T., & Mallat, N. (2002). Mobile Payment Service Development - Managerial Implications Of Consumer Value Perceptions. ECIS 2002 Proceedings,
Damodaran, A. (2023). From non fungible tokens to metaverse: blockchain based inclusive innovation in arts. Innovation and Development, 1-20. https://doi.org/10.1080/2157930x.2023.2180709
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-95. https://doi.org/10.1287/isre.3.1.60
Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30.
Dong, T.-P., Cheng, N.-C., & Wu, Y.-C. J. (2014). A study of the social networking website service in digital content industries: The Facebook case in Taiwan. Computers in Human Behavior, 30, 708-714. https://doi.org/10.1016/j.chb.2013.07.037
Donnelly, M., & White, F. (2019). Digital content and consumer protection: An empirical study of supplier compliance with consumer information obligations. Computer Law & Security Review, 35(6). https://doi.org/10.1016/j.clsr.2019.105343
Dowling, M. (2022). Is non-fungible token pricing driven by cryptocurrencies? Finance Research Letters, 44. https://doi.org/10.1016/j.frl.2021.102097
Efendioğlu, İ. H. (2022). The Rise of the Non-Fungible Token (NFT) Market in Turkey: The Effect of Social Media Interaction and the Need for Uniqueness on NFT Purchase Intention*. Review of Marketing Science, 0(0). https://doi.org/10.1515/roms-2022-0065
Erol, I., Oztel, A., Searcy, C., & Medeni, I. T. (2023). Selecting the most suitable blockchain platform: A case study on the healthcare industry using a novel rough MCDM framework. Technological Forecasting and Social Change, 186. https://doi.org/10.1016/j.techfore.2022.122132
Esfahbodi, A., Pang, G., & Peng, L. (2022). Determinants of consumers' adoption intention for blockchain technology in E-commerce. Journal of Digital Economy, 1(2), 89-101. https://doi.org/10.1016/j.jdec.2022.11.001
Ewe, S. Y., Yap, S. F., & Lee, C. K. C. (2015). Network externalities and the perception of innovation characteristics: mobile banking. Marketing Intelligence & Planning, 33(4), 592-611. https://doi.org/10.1108/mip-01-2014-0006
Fahad, & Shahid, M. (2022). Exploring the determinants of adoption of Unified Payment Interface (UPI) in India: A study based on diffusion of innovation theory. Digital Business, 2(2), 100040. https://doi.org/10.1016/j.digbus.2022.100040
Featherman, M., Jia, S., Califf, C. B., & Hajli, N. (2021). The impact of new technologies on consumers beliefs: Reducing the perceived risks of electric vehicle adoption. Technological Forecasting and Social Change, 169, 120847. https://doi.org/10.1016/j.techfore.2021.120847
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. https://doi.org/10.1016/s1071-5819(03)00111-3
Fernando, G. P., David, P. C., & Sergio, A. B. (2023). Effect of service experience, engagement and satisfaction on the future intentions of customers of a sports services. Heliyon, 9(7), e17850. https://doi.org/10.1016/j.heliyon.2023.e17850
Ferone, A., & Della Porta, A. (2022). A blockchain-based infection tracing and notification system by non-fungible tokens. Comput Commun, 192, 66-74. https://doi.org/10.1016/j.comcom.2022.05.027
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research.
Flick, C. (2022). A critical professional ethical analysis of Non-Fungible Tokens (NFTs). Journal of Responsible Technology, 12, 100054. https://doi.org/10.1016/j.jrt.2022.100054
Florida, R. (2022). The Rise of the Creative Economy. Retrieved 2023, Aug 3 from https://creativeclass.com/reports/The_Rise_of_the_Creator_Economy.pdf
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Franceschinis, C., Thiene, M., Scarpa, R., Rose, J., Moretto, M., & Cavalli, R. (2017). Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory. Energy, 125, 313-326. https://doi.org/10.1016/j.energy.2017.02.060
Frei-Landau, R., Muchnik-Rozanov, Y., & Avidov-Ungar, O. (2022). Using Rogers' diffusion of innovation theory to conceptualize the mobile-learning adoption process in teacher education in the COVID-19 era. Educ Inf Technol (Dordr), 27(9), 12811-12838. https://doi.org/10.1007/s10639-022-11148-8
Friedman, N., & Ormiston, J. (2022). Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains. Technological Forecasting and Social Change, 175. https://doi.org/10.1016/j.techfore.2021.121403
Gefen, D., & Straub, D. (2000). The Relative Importance of Perceived Ease of Use in IS Adoption: A Study of E-Commerce Adoption. Journal of the Association for Information Systems, 1(1), 1-30. https://doi.org/10.17705/1jais.00008
Gerbing, D. W., & Anderson, J. C. (1988). An Updated Paradigm for Scale Development Incorporating Unidimensionality and Its Assessment. Journal of Marketing Research, 25(2), 186-192. https://doi.org/10.2307/3172650
Goh, K.-Y., Heng, C.-S., & Lin, Z. (2013). Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content. Information Systems Research, 24(1), 88-107. https://doi.org/10.1287/isre.1120.0469
Hadji, B., & Degoulet, P. (2016). Information system end-user satisfaction and continuance intention: A unified modeling approach. J Biomed Inform, 61, 185-193. https://doi.org/10.1016/j.jbi.2016.03.021
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
Halliday, S. V. (2016). User-generated content about brands: Understanding its creators and consumers. Journal of Business Research, 69(1), 137-144. https://doi.org/10.1016/j.jbusres.2015.07.027
He, Y., Li, W., Liu, L., & He, W. (2023). NFTs – A Game Changer or a Bubble in the Digital Market? Journal of Global Information Technology Management, 26(1), 1-8. https://doi.org/10.1080/1097198x.2023.2167561
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/imds-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
Ho, S. M., Ocasio-Velázquez, M., & Booth, C. (2017). Trust or consequences? Causal effects of perceived risk and subjective norms on cloud technology adoption. computers & security, 70, 581-595. https://doi.org/10.1016/j.cose.2017.08.004
Hong, J.-C., Lin, P.-H., & Hsieh, P.-C. (2017). The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67, 264-272. https://doi.org/10.1016/j.chb.2016.11.001
Horky, F., Rachel, C., & Fidrmuc, J. (2022). Price determinants of non-fungible tokens in the digital art market. Finance Research Letters, 48, 103007. https://doi.org/10.1016/j.frl.2022.103007
Hsu, C.-L., & Lin, J. C.-C. (2016). An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives. Computers in Human Behavior, 62, 516-527. https://doi.org/10.1016/j.chb.2016.04.023
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Jain, G., Kamble, S. S., Ndubisi, N. O., Shrivastava, A., Belhadi, A., & Venkatesh, M. (2022). Antecedents of Blockchain-Enabled E-commerce Platforms (BEEP) adoption by customers – A study of second-hand small and medium apparel retailers. Journal of Business Research, 149, 576-588. https://doi.org/10.1016/j.jbusres.2022.05.041
Jain, N. K., Bhaskar, K., & Jain, S. (2022). What drives adoption intention of electric vehicles in India? An integrated UTAUT model with environmental concerns, perceived risk and government support. Research in Transportation Business & Management, 42, 100730. https://doi.org/10.1016/j.rtbm.2021.100730
Jalan, A., Matkovskyy, R., Urquhart, A., & Yarovaya, L. (2023). The role of interpersonal trust in cryptocurrency adoption. Journal of International Financial Markets, Institutions and Money, 83. https://doi.org/10.1016/j.intfin.2022.101715
Jeyaraj, A. (2020). DeLone & McLean models of information system success: Critical meta-review and research directions. International Journal of Information Management, 54, 102139. https://doi.org/10.1016/j.ijinfomgt.2020.102139
Jiang, M., & Xia, Y. (2023). What drives the volatility of non-fungible tokens (NFTs): macroeconomic fundamentals or investor attention? Applied Economics Letters, 1-10. https://doi.org/10.1080/13504851.2023.2187034
Jianxun, C., Arkorful, V. E., & Shuliang, Z. (2021). Electronic health records adoption: Do institutional pressures and organizational culture matter? Technology in Society, 65. https://doi.org/10.1016/j.techsoc.2021.101531
Johnson, N. E., Short, J. C., Chandler, J. A., & Jordan, S. L. (2022). Introducing the contentpreneur: Making the case for research on content creation-based online platforms. Journal of Business Venturing Insights, 18, e00328. https://doi.org/10.1016/j.jbvi.2022.e00328
Joia, L. A., & Altieri, D. (2018). Antecedents of continued use intention of e-hailing apps from the passengers' perspective. The Journal of High Technology Management Research, 29(2), 204-215. https://doi.org/10.1016/j.hitech.2018.09.006
Kapoor, A., Sindwani, R., Goel, M., & Shankar, A. (2022). Mobile wallet adoption intention amid COVID-19 pandemic outbreak: A novel conceptual framework. Comput Ind Eng, 172, 108646. https://doi.org/10.1016/j.cie.2022.108646
Karagür, Z., Becker, J.-M., Klein, K., & Edeling, A. (2022). How, why, and when disclosure type matters for influencer marketing. International Journal of Research in Marketing, 39(2), 313-335. https://doi.org/10.1016/j.ijresmar.2021.09.006
Karahanna, Agarwal, & Angst. (2006). Reconceptualizing Compatibility Beliefs in Technology Acceptance Research. MIS Quarterly, 30(4), 781-804. https://doi.org/10.2307/25148754
Karim, S., Lucey, B. M., Naeem, M. A., & Uddin, G. S. (2022). Examining the interrelatedness of NFTs, DeFi tokens and cryptocurrencies. Finance Research Letters, 47. https://doi.org/10.1016/j.frl.2022.102696
Karkkainen, T. (2023). Network externalities in the long-term performance of ICOs. Journal of Digital Economy, 2, 16-36. https://doi.org/10.1016/j.jdec.2023.03.003
Katz, M. L., & Shapiro, C. (1985). Network Externalities, Competition, and Compatibility. The American Economic Review, 75(3), 424-440. http://www.jstor.org/stable/1814809
KiliÇAslan, F., & EkİZler, H. (2022). Factors Effecting Purchase Intention in Blockchain and Nft (Non-Fungible Token) Technologies. Journal of Research in Business. https://doi.org/10.54452/jrb.1177600
Kim, D. Y., & Kim, H.-Y. (2021). Trust me, trust me not: A nuanced view of influencer marketing on social media. Journal of Business Research, 134, 223-232. https://doi.org/10.1016/j.jbusres.2021.05.024
Kim, J. (2021). Platform quality factors influencing content providers’ loyalty. Journal of Retailing and Consumer Services, 60, 102510. https://doi.org/10.1016/j.jretconser.2021.102510
Kim, M. (2022a). How can I Be as attractive as a Fitness YouTuber in the era of COVID-19? The impact of digital attributes on flow experience, satisfaction, and behavioral intention. Journal of Retailing and Consumer Services, 64, 102778. https://doi.org/10.1016/j.jretconser.2021.102778
Kim, M. (2022b). How can I Be as attractive as a Fitness YouTuber in the era of COVID-19? The impact of digital attributes on flow experience, satisfaction, and behavioral intention. Journal of Retailing and Consumer Services, 64. https://doi.org/10.1016/j.jretconser.2021.102778
Komulainen, R., & Nätti, S. (2023). Barriers to blockchain adoption: Empirical observations from securities services value network. Journal of Business Research, 159. https://doi.org/10.1016/j.jbusres.2023.113714
Kong, D.-R., & Lin, T.-C. (2021). Alternative investments in the Fintech era: The risk and return of Non-Fungible Token (NFT). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3914085
Kshetri, N. (2022). Scams, Frauds, and Crimes in the Nonfungible Token Market. Computer, 55(4), 60-64. https://doi.org/10.1109/mc.2022.3144763
Kwangsawad, A., & Jattamart, A. (2022). Overcoming customer innovation resistance to the sustainable adoption of chatbot services: A community-enterprise perspective in Thailand. Journal of Innovation & Knowledge, 7(3), 100211. https://doi.org/10.1016/j.jik.2022.100211
Lam, J. M. S., Ismail, H., & Lee, S. (2020). From desktop to destination: User-generated content platforms, co-created online experiences, destination image and satisfaction. Journal of Destination Marketing & Management, 18, 100490. https://doi.org/10.1016/j.jdmm.2020.100490
Li, B., Wang, X., & Tan, S. C. (2018). What makes MOOC users persist in completing MOOCs? A perspective from network externalities and human factors. Computers in Human Behavior, 85, 385-395. https://doi.org/10.1016/j.chb.2018.04.028
Li, C.-Y., & Fang, Y.-H. (2019). Predicting continuance intention toward mobile branded apps through satisfaction and attachment. Telematics and Informatics, 43. https://doi.org/10.1016/j.tele.2019.101248
Li, S., & Chen, Y. (2022). How nonfungible tokens empower business model innovation. Business Horizons. https://doi.org/10.1016/j.bushor.2022.10.006
Liang, P.-H., & Chi, Y.-P. (2021). Influence of Perceived Risk of Blockchain Art Trading on User Attitude and Behavioral Intention. Sustainability, 13(23). https://doi.org/10.3390/su132313470
Lin, K.-Y., & Lu, H.-P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computers in Human Behavior, 27(3), 1152-1161. https://doi.org/10.1016/j.chb.2010.12.009
Linares, M. G. S. (2023). Crypto Punk Mania: The Top 10 NFT Collections Of 2022. Forbes. Retrieved 2023, Jun 4 from https://www.forbes.com/sites/mariagraciasantillanalinares/2023/01/11/crypto-punk-mania-the-top-10-nft-collections-of-2022/?sh=229e0ee4ffad
Ma, Y. (2021). Elucidating determinants of customer satisfaction with live-stream shopping: An extension of the information systems success model. Telematics and Informatics, 65, 101707. https://doi.org/10.1016/j.tele.2021.101707
Malik, N., Wei, Y. M., Appel, G., & Luo, L. (2023). Blockchain technology for creative industries: Current state and research opportunities. International Journal of Research in Marketing, 40(1), 38-48. https://doi.org/10.1016/j.ijresmar.2022.07.004
Man, S. S., Guo, Y., Chan, A. H. S., & Zhuang, H. (2022). Acceptance of Online Mapping Technology among Older Adults: Technology Acceptance Model with Facilitating Condition, Compatibility, and Self-Satisfaction. ISPRS International Journal of Geo-Information, 11(11), 558. https://doi.org/10.3390/ijgi11110558
Marthews, A., & Tucker, C. (2023). What blockchain can and can’t do: Applications to marketing and privacy. International Journal of Research in Marketing, 40(1), 49-53. https://doi.org/10.1016/j.ijresmar.2022.09.001
Masuda, H., Han, S. H., & Lee, J. (2022). Impacts of influencer attributes on purchase intentions in social media influencer marketing: Mediating roles of characterizations. Technological Forecasting and Social Change, 174, 121246. https://doi.org/10.1016/j.techfore.2021.121246
Menaker, M. (2018). Four Lessons From CryptoKitties On Achieving Virality. Forbes. Retrieved 2023, Jun 5 from https://www.forbes.com/sites/forbescommunicationscouncil/2018/01/18/four-lessons-from-cryptokitties-on-achieving-virality/?sh=1255137833d6
Menzli, L. J., Smirani, L. K., Boulahia, J. A., & Hadjouni, M. (2022). Investigation of open educational resources adoption in higher education using Rogers' diffusion of innovation theory. Heliyon, 8(7), e09885. https://doi.org/10.1016/j.heliyon.2022.e09885
Mičunović, M., & Balković, L. (2016). Author's rights in the digital age. Libellarium: časopis za istraživanja u području informacijskih i srodnih znanosti, 8(2), 27-64. https://doi.org/10.15291/libellarium.v0i0.232
Miremadi, I., Khoshbash, M., & Saeedian, M. (2023). Fostering generativity in platform ecosystems: How open innovation and complexity interact to influence platform adoption. Research Policy, 52(6). https://doi.org/10.1016/j.respol.2023.104781
Mitchell, V. W. (1999). Consumer perceived risk: conceptualisations and models. European Journal of Marketing, 33(1/2), 163-195. https://doi.org/10.1108/03090569910249229
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222. https://doi.org/10.1287/isre.2.3.192
Murray, A., Kim, D., & Combs, J. (2023). The promise of a decentralized internet: What is Web3 and how can firms prepare? Business Horizons, 66(2), 191-202. https://doi.org/10.1016/j.bushor.2022.06.002
Nakavachara, V., & Saengchote, K. (2022). Does unit of account affect willingness to pay? Evidence from metaverse LAND transactions. Finance Research Letters, 49. https://doi.org/10.1016/j.frl.2022.103089
Nguyen-Phuoc, D. Q., Su, D. N., Nguyen, M. H., Vo, N. S., & Oviedo-Trespalacios, O. (2022). Factors influencing intention to use on-demand shared ride-hailing services in Vietnam: risk, cost or sustainability? Journal of Transport Geography, 99. https://doi.org/10.1016/j.jtrangeo.2022.103302
Ning, Y., Yan, M., Xu, S. X., Li, Y., & Li, L. (2021). Shared parking acceptance under perceived network externality and risks: Theory and evidence. Transportation Research Part A: Policy and Practice, 150, 1-15. https://doi.org/10.1016/j.tra.2021.05.009
Nobanee, H., & Ellili, N. O. D. (2023). Non-fungible tokens (NFTs): A bibliometric and systematic review, current streams, developments, and directions for future research. International Review of Economics & Finance, 84, 460-473. https://doi.org/10.1016/j.iref.2022.11.014
Okorie, D. I., & Lin, B. (2023). Cryptocurrency spectrum and 2020 pandemic: Contagion analysis. International Review of Economics & Finance, 84, 29-38. https://doi.org/10.1016/j.iref.2022.11.007
Oliver, R. L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.2307/3150499
Oturakci, M., & Yuregir, O. H. (2018). New approach to Rogers’ innovation characteristics and comparative implementation study. Journal of Engineering and Technology Management, 47, 53-67. https://doi.org/10.1016/j.jengtecman.2017.12.004
Outcault, S., Sanguinetti, A., & Nelson, L. (2022). Technology characteristics that influence adoption of residential distributed energy resources: Adapting Rogers’ framework. Energy Policy, 168, 113153. https://doi.org/10.1016/j.enpol.2022.113153
Ouyang, L., Zhang, W., & Wang, F.-Y. (2022). Intelligent contracts: Making smart contracts smart for blockchain intelligence. Computers and Electrical Engineering, 104, 108421. https://doi.org/10.1016/j.compeleceng.2022.108421
Palm, A. (2022). Innovation systems for technology diffusion: An analytical framework and two case studies. Technological Forecasting and Social Change, 182, 121821. https://doi.org/10.1016/j.techfore.2022.121821
Park, A., Wilson, M., Robson, K., Demetis, D., & Kietzmann, J. (2022). Interoperability: Our exciting and terrifying Web3 future. Business Horizons. https://doi.org/10.1016/j.bushor.2022.10.005
Pawlak, M., & Poniszewska-Maranda, A. (2021). Trends in blockchain-based electronic voting systems. Information Processing & Management, 58(4). https://doi.org/10.1016/j.ipm.2021.102595
Peres, R., Schreier, M., Schweidel, D. A., & Sorescu, A. (2023). Blockchain meets marketing: Opportunities, threats, and avenues for future research. International Journal of Research in Marketing, 40(1), 1-11. https://doi.org/10.1016/j.ijresmar.2022.08.001
Pham, Q. T., Dang, N. M., & Nguyen, D. T. (2020). Factors Affecting on the Digital Piracy Behavior: An Empirical Study in Vietnam. Journal of Theoretical and Applied Electronic Commerce Research, 15(2), 0-0. https://doi.org/10.4067/s0718-18762020000200108
Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service Quality: A Measure of Information Systems Effectiveness. MIS Quarterly, 19(2). https://doi.org/10.2307/249687
Pizam, A., Ozturk, A. B., Balderas-Cejudo, A., Buhalis, D., Fuchs, G., Hara, T., Meira, J., Revilla, M. R. G., Sethi, D., Shen, Y., State, O., Hacikara, A., & Chaulagain, S. (2022). Factors affecting hotel managers’ intentions to adopt robotic technologies: A global study. International Journal of Hospitality Management, 102, 103139. https://doi.org/10.1016/j.ijhm.2022.103139
Podsakoff, P. M., & Organ, D. W. (1986). Self-Reports in Organizational Research: Problems and Prospects. Journal of Management, 12(4), 531-544. https://doi.org/10.1177/014920638601200408
Qian, C., Mathur, N., Zakaria, N. H., Arora, R., Gupta, V., & Ali, M. (2022). Understanding public opinions on social media for financial sentiment analysis using AI-based techniques. Information Processing & Management, 59(6). https://doi.org/10.1016/j.ipm.2022.103098
Quy Nguyen-Phuoc, D., Oviedo-Trespalacios, O., Vo, N. S., Thi Le, P., & Van Nguyen, T. (2021). How does perceived risk affect passenger satisfaction and loyalty towards ride-sourcing services? Transportation Research Part D: Transport and Environment, 97, 102921. https://doi.org/10.1016/j.trd.2021.102921
Rogers, E. M. (2002). Diffusion of preventive innovations. Addict Behav, 27(6), 989-993. https://doi.org/10.1016/s0306-4603(02)00300-3
Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Free Press.
Rogers, E. M. (2015). Evolution: Diffusion of Innovations. International Encyclopedia of the Social & Behavioral Sciences (Second Edition), 378-381. https://doi.org/10.1016/B978-0-08-097086-8.81064-8
Rouhani, S., Ashrafi, A., Zareravasan, A., & Afshari, S. (2018). Business Intelligence Systems Adoption Model: An Empirical Investigation. Journal of Organizational and End User Computing, 30.
Sayaf, A. M. (2023). Adoption of E-learning systems: An integration of ISSM and constructivism theories in higher education. Heliyon, 9(2), e13014. https://doi.org/10.1016/j.heliyon.2023.e13014
Sebetci, Ö. (2018). Enhancing end-user satisfaction through technology compatibility: An assessment on health information system. Health Policy and Technology, 7(3), 265-274. https://doi.org/10.1016/j.hlpt.2018.06.001
Senyo, P. K., Effah, J., & Addae, E. (2016). Preliminary insight into cloud computing adoption in a developing country. Journal of Enterprise Information Management, 29(4), 505-524. https://doi.org/10.1108/jeim-09-2014-0094
Seo, K. H., & Lee, J. H. (2021). The Emergence of Service Robots at Restaurants: Integrating Trust, Perceived Risk, and Satisfaction. Sustainability, 13(8). https://doi.org/10.3390/su13084431
Serada, A., Sihvonen, T., & Harviainen, J. T. (2020). CryptoKitties and the New Ludic Economy: How Blockchain Introduces Value, Ownership, and Scarcity in Digital Gaming. Games and Culture, 16(4), 457-480. https://doi.org/10.1177/1555412019898305
Serneels, S. (2023). Detecting wash trading for nonfungible tokens. Finance Research Letters, 52. https://doi.org/10.1016/j.frl.2022.103374
Shao, G. (2009). Understanding the appeal of user‐generated media: a uses and gratification perspective. Internet Research, 19(1), 7-25. https://doi.org/10.1108/10662240910927795
Sharma, P., Namasudra, S., Crespo, R. G., Parra-Fuente, J., & Trivedi, M. C. (2023). EHDHE: Enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain. Information Sciences, 629, 703-718. https://doi.org/10.1016/j.ins.2023.01.148
Shimron, L. (2022). NFT 2022 Year-End Review. Forbes. Retrieved 2023, Jun 18 from https://www.forbes.com/sites/leeorshimron/2022/12/21/nft-2022-year-end-review/?sh=57f6d0445c14
Shin, D., & Rice, J. (2022). Cryptocurrency: A panacea for economic growth and sustainability? A critical review of crypto innovation. Telematics and Informatics, 71, 101830. https://doi.org/10.1016/j.tele.2022.101830
Sholihah, E., Antari, I. S. W., & Rochimawati, R. F. (2023). Determinants of BSI mobile banking adoption intentions: DeLone & McLean and UTAUT Model integration with religiosity. Asian Journal of Islamic Management (AJIM), 5(1), 1-17.
Shrayberg, Y. L., & Volkova, K. Y. (2021). Features of Copyright Transformation in the Information Environment in the Age of Digitalization. Scientific and Technical Information Processing, 48(1), 30-37. https://doi.org/10.3103/s014768822101007x
Singh, S., Singh, N., Kalinić, Z., & Liébana-Cabanillas, F. J. (2021). Assessing determinants influencing continued use of live streaming services: An extended perceived value theory of streaming addiction. Expert Systems With Applications, 168, 114241. https://doi.org/10.1016/j.eswa.2020.114241
Strader, T. J., Ramaswami, S. N., & Houle, P. A. (2007). Perceived network externalities and communication technology acceptance. European journal of information systems, 16(1), 54-65.
Susarla, A., Oh, J.-H., & Tan, Y. (2012). Social Networks and the Diffusion of User-Generated Content: Evidence from YouTube. Information Systems Research, 23(1), 23-41. https://doi.org/10.1287/isre.1100.0339
Tafesse, W., & Dayan, M. (2023). Content creators' participation in the creator economy: Examining the effect of creators’ content sharing frequency on user engagement behavior on digital platforms. Journal of Retailing and Consumer Services, 73. https://doi.org/10.1016/j.jretconser.2023.103357
Tehseen, S., Ramayah, T., & Sajilan, S. (2017). Testing and Controlling for Common Method Variance: A Review of Available Methods. Journal of Management Sciences, 4(2), 142-168. https://doi.org/10.20547/jms.2014.1704202
THOMAS, L. (2022). The BAYC Bible: Everything To Know About Bored Ape NFTs. NFT Now. Retrieved 2023, Jun 5 from https://nftnow.com/guides/bored-ape-yacht-club-guide/
Tseng, M.-L., Bui, T.-D., Lan, S., Lim, M. K., & Mashud, A. H. M. (2021). Smart product service system hierarchical model in banking industry under uncertainties. International Journal of Production Economics, 240, 108244. https://doi.org/10.1016/j.ijpe.2021.108244
Tsiros, M., & Mittal, V. (2000). Regret: A Model of Its Antecedents and Consequences in Consumer Decision Making. Journal of Consumer Research, 26(4), 401-417. https://doi.org/10.1086/209571
Ullah, N., Al-Rahmi, W. M., Alfarraj, O., Alalwan, N., Alzahrani, A. I., Ramayah, T., & Kumar, V. (2022). Hybridizing cost saving with trust for blockchain technology adoption by financial institutions. Telematics and Informatics Reports, 6, 100008. https://doi.org/10.1016/j.teler.2022.100008
Upadhyay, P., Kumar, A., Dwivedi, Y. K., & Adlakha, A. (2022). Continual usage intention of platform-based governance services: A study from an emerging economy. Government Information Quarterly, 39(1), 101651. https://doi.org/10.1016/j.giq.2021.101651
Urbach, N., Smolnik, S., & Riempp, G. (2010). An empirical investigation of employee portal success. The Journal of Strategic Information Systems, 19(3), 184-206. https://doi.org/10.1016/j.jsis.2010.06.002
Uzir, M. U. H., Bukari, Z., Al Halbusi, H., Lim, R., Wahab, S. N., Rasul, T., Thurasamy, R., Jerin, I., Chowdhury, M. R. K., Tarofder, A. K., Yaakop, A. Y., Hamid, A. B. A., Haque, A., Rauf, A., & Eneizan, B. (2023). Applied artificial intelligence: Acceptance-intention-purchase and satisfaction on smartwatch usage in a Ghanaian context. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18666
Vieira, K. C., Carvalho, E. G., Sugano, J. Y., & Prado, J. W. d. (2018). The impact of network externalities on acceptance and use of an app of peer-to-peer platform: a study with Uber users [UTAUT2; Network Externality; Uber; Technology; Structural Equation Modeling]. Revista Gestão & Tecnologia, 18(3), 23-46. https://doi.org/10.20397/2177-6652/2018.v18i3.1372
Wang, Y., Douglas, M., & Hazen, B. (2021). Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention. Transportation Research Part A: Policy and Practice, 143, 1-13. https://doi.org/10.1016/j.tra.2020.11.002
Wang, Y., Gu, J., Wang, S., & Wang, J. (2019). Understanding consumers’ willingness to use ride-sharing services: The roles of perceived value and perceived risk. Transportation Research Part C: Emerging Technologies, 105, 504-519. https://doi.org/10.1016/j.trc.2019.05.044
Wilkoff, S., & Yildiz, S. (2023). The behavior and determinants of illiquidity in the non-fungible tokens (NFTs) market. Global Finance Journal, 55. https://doi.org/10.1016/j.gfj.2022.100782
Wilson, K. B., Karg, A., & Ghaderi, H. (2022). Prospecting non-fungible tokens in the digital economy: Stakeholders and ecosystem, risk and opportunity. Business Horizons, 65(5), 657-670. https://doi.org/10.1016/j.bushor.2021.10.007
Wong, L.-W., Tan, G. W.-H., Lee, V.-H., Ooi, K.-B., & Sohal, A. (2020). Unearthing the determinants of Blockchain adoption in supply chain management. International Journal of Production Research, 58(7), 2100-2123. https://doi.org/10.1080/00207543.2020.1730463
Wu, I.-L., & Chiu, M.-L. (2015). Organizational applications of IT innovation and firm's competitive performance: A resource-based view and the innovation diffusion approach. Journal of Engineering and Technology Management, 35, 25-44. https://doi.org/10.1016/j.jengtecman.2014.09.002
Wu, J.-H., & Wang, Y.-M. (2006). Measuring KMS success: A respecification of the DeLone and McLean's model. Information & Management, 43(6), 728-739. https://doi.org/10.1016/j.im.2006.05.002
Xia, Z., Wu, D., & Zhang, L. (2022). Economic, Functional, and Social Factors Influencing Electric Vehicles’ Adoption: An Empirical Study Based on the Diffusion of Innovation Theory. Sustainability, 14(10). https://doi.org/10.3390/su14106283
Yang, X. (2021). Determinants of consumers’ continuance intention to use social recommender systems: A self-regulation perspective. Technology in Society, 64, 101464. https://doi.org/10.1016/j.techsoc.2020.101464
Yoo, K., Bae, K., Park, E., & Yang, T. (2020). Understanding the diffusion and adoption of Bitcoin transaction services: The integrated approach. Telematics and Informatics, 53, 101302. https://doi.org/10.1016/j.tele.2019.101302
Yousaf, I., & Yarovaya, L. (2022a). Herding behavior in conventional cryptocurrency market, non-fungible tokens, and DeFi assets. Finance Research Letters, 50, 103299. https://doi.org/10.1016/j.frl.2022.103299
Yousaf, I., & Yarovaya, L. (2022b). The relationship between trading volume, volatility and returns of Non-Fungible Tokens: evidence from a quantile approach. Finance Research Letters, 50, 103175. https://doi.org/10.1016/j.frl.2022.103175
Yusoff, A. S. M., Peng, F. S., Razak, F. Z. A., & Mustafa, W. A. (2020). Discriminant Validity Assessment of Religious Teacher Acceptance: The Use of HTMT Criterion. Journal of Physics: Conference Series, 1529(4). https://doi.org/10.1088/1742-6596/1529/4/042045
Zhang, Z., Sun, Q., & Ma, Y. (2022). The hedge and safe haven properties of non-fungible tokens (NFTs): Evidence from the nonlinear autoregressive distributed lag (NARDL) model. Finance Research Letters, 50, 103315. https://doi.org/10.1016/j.frl.2022.103315
Zhong, J., & Chen, T. (2023). Antecedents of mobile payment loyalty: An extended perspective of perceived value and information system success model. Journal of Retailing and Consumer Services, 72. https://doi.org/10.1016/j.jretconser.2023.103267
Zuiderwijk, A., Janssen, M., & Dwivedi, Y. K. (2015). Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government Information Quarterly, 32(4), 429-440. https://doi.org/10.1016/j.giq.2015.09.005
電子全文 電子全文(網際網路公開日期:20250818)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊