Breiman, L. (2001). Random forests. Machine learning, 45, 5–32.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful:Learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res., 20(177), 1–81.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
Kammer, D. C. (1991). Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control, and Dynamics, 14(2), 251– 259.
Meo, M., & Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering structures, 27(10), 1488–1497.
Pan, Y., Ventura, C. E., & Li, T. (2022). Sensor placement and seismic response reconstruction for structural health monitoring using a deep neural network. Bulletin of Earthquake Engineering, 20(9), 4513–4532.
Peeters, B., & De Roeck, G. (1999). Reference-based stochastic subspace identification for output-only modal analysis. Mechanical systems and signal processing, 13(6),855–878.
Rao, A. R. M., & Anandakumar, G. (2007). Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique. Smart materials and Structures, 16(6), 2658.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533–536.
陳明徹(2012)。應用隨機子空間系統識別方法探討橋樑結構健康診斷。國立臺灣大學土木工程學研究所碩士論文。郭采蓉(2018)。應用隨機子空間識別法於結構健康診斷:結合穩態圖穩定標準與頻域分解法。國立臺灣大學土木工程學研究所碩士論文。楊晏瑜(2022)。建築物微振量測之最佳感測器配置。國立臺灣大學土木工程學研究所博士論文。